Advertisement

Nanotechnology for Crop Improvement

  • Pragati MisraEmail author
  • Pradeep Kumar Shukla
  • Krishnendu Pramanik
  • Sanghdeep Gautam
  • Chittaranjan Kole
Chapter

Abstract

Nanotechnology has the potential to reinforce the mission toward evergreen revolution by enhancing agricultural productivity with limited inputs. It is emerging as a paradigm shift and evolving as a promising tool to begin a new era of precise farming techniques and therefore may provide a possible solution for crop improvement, even in challenging environments. Employment of engineered nanoparticles (ENPs), whether carbon- or metal-based, may be the future solution to increase crop production for feeding the fast-growing world population. This chapter provides an overview of the current knowledge on the effects of nanoparticles for crop improvement. Overriding influences of different carbon, metal-based and metal oxide nanoparticles on different growth parameters (number of seminal root initiation, root elongation, shoot length, number of seeds, flowers and its quality), ultimately leading to increased plant biomass and yield have been presented. Throughout this chapter, the beneficial role of nanoparticles through enhanced seed germination, increased root and shoot length, fruit and crop yield, and substantial increase in vegetative biomass of seedlings and plants in many crops including maize, wheat, alfalfa, soybean, mustard, mung bean, tomato, potato, lettuce, spinach, onion, peanut, borage, Arabidopsis, cluster bean, and bitter melon is highlighted. The experimental evidences for enhancement of secondary metabolites through nanoparticle treatment under in vivo and in vitro conditions are presented. Although implementation of nanotechnology for agriculture sustainability via enhanced yield, biomass, and secondary metabolite is at juvenile stage, world will witness exceptional and unparalleled prospective of nanoparticles for invigorating agriculture in many ways. It is evident that more investigations are urgently required to know the type of nanoparticle, size, concentration, and mode of application to enable its application on large scale for crop improvement.

Keywords

Nanoparticles Agriculture Yield Biomass Secondary metabolite 

References

  1. Aditya N, Patnakar S, Madhusudan B, Murthy R, Souto E (2010) Artemether loaded lipid nanoparticles produced by modified thin film hydration: pharmacokinetics, toxicological and invivo antimalarial activity. Eur J Pharm Sci 40:448–455PubMedCrossRefGoogle Scholar
  2. Al Sherbini A, Abd El-Gawad HG, Kamal MA, El-feky SA (2015) Potential of He-Ne laser irradiation and iron nanoparticles to increase growth and yield of pea. Amer-Euras J Agric Environ Sci 15(7):1435–1446Google Scholar
  3. Alidoust D, Isoda A (2013) Effect of gamma Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.)Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35(12):3365–3375CrossRefGoogle Scholar
  4. Almeelbi T, Bezbaruah AN (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanopart Res 14:1497–1500CrossRefGoogle Scholar
  5. AL-Oubaidi HKM, Kasid NM (2015) Increasing (phenolyic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J Pharmaceut Res 4(11):1791–1799Google Scholar
  6. Amuamuha L, Pirzad A, Hadi H (2012) Effect of varying concentrations and time of nanoiron foliar application on the yield and essential oil of Pot marigold. Int Res J Appl Basic Sci 3:2085–2090Google Scholar
  7. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–339CrossRefGoogle Scholar
  8. Asghari GH, Mostajeran A, Sadeghi H, Nakhaei A (2012) Effect of salicylic acid and silver nitrate on taxol production in Taxus baccata. J Med Plants 11(8):74–82Google Scholar
  9. Ashrafi SJ, Rastegar MF, Jafarpour B, Kumar SA (2010) Possibility use of silvernano particle for controlling Fusarium wilting in plant pathology. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds) Symposium of international conference on food and agricultural applications of nanotechnologies, São Pedro SP, Brazil. ISBN 978-85-63274-02-4Google Scholar
  10. Aswathy Aromal S, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5PubMedCrossRefGoogle Scholar
  11. Bahreini M, Omidi M, Bondarian F, Gholibaygian M (2015) Metabolites screening of nano elicited in vitro Iranian fennel (Foeniculum vulgare). Am J Biol Life Sci 3(5):194–198Google Scholar
  12. Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum 7(1):679–683Google Scholar
  13. Baldi A, Dixit VK (2008) Yield enhancement strategies for artemisinin production by suspension culture of Artemisia annua. Bioresour Technol 99:4609–4614PubMedCrossRefGoogle Scholar
  14. Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857PubMedCrossRefGoogle Scholar
  15. Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. In: Proceedings of the international conference on nanomaterials: applications and properties, Crimea, Ukraine, Proc NAP2, 04NABM14Google Scholar
  16. Billia AR, Flamini G, Tagioli V, Morelli I, Vincieri FF (2002) GC–MS analysis of essential oil of some commercial Fennel teas. Food Chem 76(3):307–310CrossRefGoogle Scholar
  17. Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2(1):21–36Google Scholar
  18. Brennan B (2012) Nanobiotechnology in agriculture. Strategic business insights 2012, Menlo Park, CA, USA, Available from: http://www.strategicbusinessinsights.com/about/featured/2012/2012-10-nanobio-agriculture.shtml. Accessed 18 Apr 2014
  19. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612CrossRefGoogle Scholar
  20. Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205CrossRefGoogle Scholar
  21. Canas JE, long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionized single walled carbon nanotubes on root elongation of selected crop species. Nanomat Environ 27:1922–1931Google Scholar
  22. Chaouche T, Haddouchi F, Lazouni HA, Bekkara FA (2011) Phytochemical study of the plant Foeniculum vulgare Mill. Pharm Lett 3(2):329–333Google Scholar
  23. Chen HC, Roco MC, Son JB, Jiang S, Larson CA, Gao Q (2013) Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding. J Nanopart Res 15:1951CrossRefGoogle Scholar
  24. Choi HK, Yun JH, Kim SL, Son JS, Kim HR, Kim JH, Choi HJ, Hong SS (2001) Enhanced production of paclitaxel by semi-continuous batch process (SCBP) in suspension culture of Taxus chinensis. Enzyme Microb Technol 29:583–586CrossRefGoogle Scholar
  25. Chutipaijit S (2015) Establishment of condition and nano particle factors influencing plant regeneration from aromatic rice (Oryza sativa). Int J Agric Biol 17:1049–1054Google Scholar
  26. Deltito J, Beyer D (1998) The scientific, quasi-scientific and popular literature on the use of St. John’s Wort in the treatment of depression. Affect Disord 51:245–251CrossRefGoogle Scholar
  27. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nano particles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):1–5CrossRefGoogle Scholar
  28. Dias ACP, Tomas-Barberan FA, Fernandes-Ferreira M, Ferreas F (1998) Unusual flavonoids produced by callus culturesof Hypericum perforatum. Phytochemistry 48:1156–1168CrossRefGoogle Scholar
  29. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15CrossRefGoogle Scholar
  30. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002CrossRefGoogle Scholar
  31. Dofing SM (1995) Phenological development-yield relationships in spring barley in a subarctic environment. Can J Plant Sci 75:93–97CrossRefGoogle Scholar
  32. Fakruddin MD, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:1–8CrossRefGoogle Scholar
  33. Feizi H, Kamali M, Jafari L, RezvaniMoghaddam P (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511PubMedCrossRefGoogle Scholar
  34. Ferreira JFS, Simon JE, Janick J (1995) Developmental studies of Artemisia annua: flowering and artemisinin production under greenhouse and field conditions. Planta Med 61:167–170PubMedCrossRefGoogle Scholar
  35. Frewer LJ, Norde W, Fischer ARH, Kampers FWH (2011) Nanotechnology in the agri-food sector: implications for the future. Wiley-VCH Weinheim, Germany. ISBN 9783527330607 p 328Google Scholar
  36. Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273PubMedCrossRefGoogle Scholar
  37. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2008) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res J 111:239–253CrossRefGoogle Scholar
  38. Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540PubMedCrossRefGoogle Scholar
  39. Ghanati F, Bakhtiarian S (2014) Effect of methyl jasmonate and silver nanoparticles on production of secondary metabolites by Calendula officinalis L (Asteraceae). Trop J Pharmaceut Res 13(11):1783–1789CrossRefGoogle Scholar
  40. Ghasemi B, Hosseini R, Nayeri FD (2015) Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk J Bot 39:769–777CrossRefGoogle Scholar
  41. Giraldo JP, Landry MP, Faltermeier SM, Mc Nicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Jacqueline AB, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408PubMedCrossRefGoogle Scholar
  42. Gonzalez-melendi P, Fernandez-pacheco R, Coronado MJ, Corredor E, Testillano PS, Risuno MC, Marquina C, Ibarra MR, Rubiales D, Perez-de-luque A (2008) Nanoparticles as smart treatment-delivery systems in plant: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195PubMedCrossRefGoogle Scholar
  43. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminaliaarjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11Google Scholar
  44. Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor: opportunities and constraints. Policy Brief 19. International Food Policy Research Institute, Washington DCGoogle Scholar
  45. Gurdip S, Maurya S, de Lampasona MP, Catalan C (2006) Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 17:745–752CrossRefGoogle Scholar
  46. Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1(1):6–11Google Scholar
  47. Haghighi M, Afifipour Z, Mozafarian M (2012) The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Veg Crops Res Bull 76(119):126Google Scholar
  48. Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846PubMedCrossRefGoogle Scholar
  49. Hasanuzzaman M, Ahamed KU, Khalequzzaman KM, Shamsuzzaman AMM, Nahar K (2008) Plant characteristics, growth and leaf yield of Aloe vera L. as affected by organic manure in pot culture. Aust J Crop Sci 2(3):158–163Google Scholar
  50. Heiras-Palazuelos MJ, Ochoa-Lugo MI, Gutierrez-Dorado R, Lopez Valenzuela JA, Mora-Rochin S, Milan Carrillo J et al (2013) Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (Cicer arietinum L.) cultivars. Int J Food Sci Nutr 64:69–76PubMedCrossRefGoogle Scholar
  51. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279PubMedCrossRefGoogle Scholar
  52. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plants system. J Nanotechnol 12:1–10Google Scholar
  53. Jaberzadeh A, Moaveni P, Tohidi Moghadam HR, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobot 41(1):201–207Google Scholar
  54. Jayarambabu N, kumari BS, Rao KV, Prabhu YT (2015) Beneficial role of zinc oxide nanoparticles on green crop production. Int J Adv Multi Res Trends 2(1):273–282Google Scholar
  55. Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392Google Scholar
  56. Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vignaradiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49(2):168–177PubMedCrossRefGoogle Scholar
  57. Khan MS, Zaka M, Abbasi BH, Rahman LU, Shah A (2016) Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol. doi: 10.1049/iet-nbt.2015.0050 Google Scholar
  58. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227PubMedCrossRefGoogle Scholar
  59. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033PubMedCrossRefGoogle Scholar
  60. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135PubMedCrossRefGoogle Scholar
  61. Khodakovskaya MV, Kim B-S, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123PubMedCrossRefGoogle Scholar
  62. Kisan B, Shruthi H, Sharanagouda H, Revanappa SB, Pramod NK (2015) Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5:135. doi: 10.4172/2168-9881.1000135 Google Scholar
  63. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handry RD, Lyon DY, Manendra S, McKaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate bioavailability, and effects. Environ Toxicol Chem 27:1825–1851PubMedCrossRefGoogle Scholar
  64. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37PubMedPubMedCentralCrossRefGoogle Scholar
  65. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658CrossRefGoogle Scholar
  66. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468PubMedCrossRefGoogle Scholar
  67. Kumari M, Mukherhjee A, Chandrasekaran N (2009) Genotoxicity of silver nano particles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefGoogle Scholar
  68. Laware SL, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol Appl Sci 3(7):874–881Google Scholar
  69. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  70. Lee WL, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefGoogle Scholar
  71. Lee SY, Chung HI, Kim SY, Lee IS (2012) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20(2):848–854CrossRefGoogle Scholar
  72. Lee SY, Chung HI, Kim SY, Lee IS (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1668CrossRefGoogle Scholar
  73. Lei C, Ma D, Pu G, Qiu X, Du Z, Wang H, Li G, Ye H, Liu B (2011) Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Ind Crop Prod 33:176–182CrossRefGoogle Scholar
  74. Li P, Chen J, Wu P (2011) Agronomic characteristics and grain yield in 30 spring wheat genotypes under drought stress and nonstress conditions. Agron J 103:1619–1628CrossRefGoogle Scholar
  75. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132PubMedCrossRefGoogle Scholar
  76. Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubiscoactivase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178PubMedCrossRefGoogle Scholar
  77. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139PubMedCrossRefGoogle Scholar
  78. Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, Wang Y (2005) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18Google Scholar
  79. Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing nano-sub nano composites of slow or controlled release of fertilizers. Sci Agri Sin 39:1598–1604Google Scholar
  80. Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441CrossRefGoogle Scholar
  81. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010PubMedCrossRefGoogle Scholar
  82. Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42–54CrossRefGoogle Scholar
  83. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172Google Scholar
  85. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061PubMedCrossRefGoogle Scholar
  86. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram(Cicer arietinum) seedlings using plant agar method. J Nanotechnol Article ID 696535, 7 pagesGoogle Scholar
  87. Malakouti MJ, Tehrani MM (2005) The role of micronutrients in yield increasing and improving quality of agricultural products, 3rd edn. Tarbiyat Modarres University, Tehran, pp 273–279Google Scholar
  88. Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E, Musett R (2016) Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. Int J Environ Res Public Health 13:332–350Google Scholar
  89. Menke F, Champion A, Kijne J, Memelink J (2009) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate and elicitor-inducible AP2-domain transcription factor, ORCA2. Eur Mol Biol Org 18:4455–4463Google Scholar
  90. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques, vol 1., Elsevier Academic PressNew York, USA, pp 159–180CrossRefGoogle Scholar
  91. Mondal A, Basu R, Das S, Nandi P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528CrossRefGoogle Scholar
  92. Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230PubMedCrossRefGoogle Scholar
  93. Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes ofmaize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2(1):247Google Scholar
  94. Mulabagal V, Tsay HS (2004) Plant cell cultures–an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48Google Scholar
  95. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agri Crop Sci 5(19):2229–2232Google Scholar
  96. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  97. Najafi S, Jamei R (2014) Effect of silver nanoparticles and Pb(NO3)2 on the yield and chemical composition of mung bean (Vigna radiata). J Stress Physiol Biochem 10:316–325Google Scholar
  98. Nanotechnology in Agriculture and Food (2006) European nanotechnology gateway. http://www.nanoforum.org/dateien/temp/nanotechnology%20in%20agriculture%20-and%20food.pdf
  99. Nejatzadeh-Barandozi F, Darvishzadeh F, Aminkhani A (2014) Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.). Organic Med Chem Lett 4(1):1–6Google Scholar
  100. Ngo QB, Dao TH, Nguyen HC, TranXT Nguyen TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:1–7CrossRefGoogle Scholar
  101. Panwar J, Jain N, Bhargaya A, Akthar MS, Yun YS (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing “nano-fertilizers”. In: 3rd international conference on environmental research and technology, pp 348–352Google Scholar
  102. Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect of sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Giri PK, Goswami DK, Perumal A (eds) Advanced nanomaterials and nanotechnology. Springer, Berlin, pp 301–309CrossRefGoogle Scholar
  103. Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Wiley-Blackwell, West Sussex, pp 299–405Google Scholar
  104. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332PubMedCrossRefGoogle Scholar
  105. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927CrossRefGoogle Scholar
  106. Racuciu M, Creanga D (2007) TMA-OH coated magnetic nanoparticles internalize in vegetal tissue. Rom J Phys 52:395–402Google Scholar
  107. Raei M, Angaji SA, Omidi M, Khodayari M (2014) Effect of abiotic elicitors on tissue culture of Aloe vera. Int J Biosci 5(1):74–81CrossRefGoogle Scholar
  108. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57Google Scholar
  109. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153PubMedCrossRefGoogle Scholar
  110. Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2(1):55–58Google Scholar
  111. Reynolds T (2004) Aloe chemistry. In: Reynolds T (ed) The genus Aloe. CRC Press, Boca Raton, pp 39–74Google Scholar
  112. Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675PubMedCrossRefGoogle Scholar
  113. Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res. doi:10.1007/s11356-015-4243Google Scholar
  114. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3(10):190–197Google Scholar
  115. Scott N, Chen H (2002) Nanoscale science and engineering for agriculture and food systems. National planning workshop, 18–19 Nov 2002, Washington DC, USA. Available from: http://www.nseafs.cornell.edu/web.roadmap.pdf
  116. Seif SM, Sorooshzadeh A, Rezazadehs H, Naghdibadi HA (2011) Effect of nanosilver and silver nitrate on seed yield of borage. J Med Plants Res 5(2):171–175Google Scholar
  117. Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Ugent KB, Bianco A, Baba Y (2011a) A functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270PubMedCrossRefGoogle Scholar
  118. Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Ugent KB, Bianco Baba Y (2011b) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499PubMedCrossRefGoogle Scholar
  119. Serag MF, Kaji N, Tokeshi M, Baba Y (2012a) Introducing carbon nano tubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400CrossRefGoogle Scholar
  120. Serag MF, Braeckmans K, Habuchi S, Kaji N, Bianco A, Baba Y (2012b) Spatiotemporal visualization of subcellular dynamics of carbon nanotubes. Nano Lett 12:6145–6151PubMedCrossRefGoogle Scholar
  121. Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3:4856–4862CrossRefGoogle Scholar
  122. Servin A, Elmer W, Mukherjee A, Torre-Roche RD, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92–112CrossRefGoogle Scholar
  123. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148CrossRefGoogle Scholar
  124. Shakeran Z, Keyhanfar M,  Asghari G, Ghanadian M (2015) Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turk J Biol 39:111–118Google Scholar
  125. Sharafi E, Nekoei SMK, Fotokian MH, Davoodi D, Mirzaei HH, Hasanloo T (2013) Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of St John’s wort (Hypericum perforatum L.). J Med Plants By-prod 2:177–184Google Scholar
  126. Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233PubMedCrossRefGoogle Scholar
  127. Sharon M, Choudhry A, Kumar R (2010) Nanotechnology in agricultural disease and food safety. J Phytol 2:83–92Google Scholar
  128. Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113Google Scholar
  129. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17PubMedCrossRefGoogle Scholar
  130. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437PubMedCrossRefGoogle Scholar
  131. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18PubMedCrossRefGoogle Scholar
  133. Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:273–275Google Scholar
  134. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  135. Sugunan A, Dutta J (2008) Pollution treatment, remediation and sensing. In: Harald K (ed) Nanotechnology, vol 3. Wiley-VCH, Weinheim, pp 125–143Google Scholar
  136. Tahmasbi D, Zarghami R, Azghandi AV, Chaichi M (2011) Effects of nanosilver and nitroxin biofertilizer on yield and yield components of potato minitubers. Int J Agric Biol 13:986–990Google Scholar
  137. Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289Google Scholar
  138. Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 2:577–591CrossRefGoogle Scholar
  139. Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  140. Vakhrouchev AV, Golubchikov VB (2007) Numerical investigation of the dynamics of nanoparticle systems in biological processes of plant nutrition. J Phy Conf Sr 61:31–35CrossRefGoogle Scholar
  141. Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334PubMedCrossRefGoogle Scholar
  142. Welch RM, Webb MJ, Loneragan JF (1982) Zinc in membrane function and its role in phosphorus toxicity. In: Scaife A (ed) Proceedings of the ninth plant nutrition colloquium. CAB International, Wallingford, UK, pp 710–715Google Scholar
  143. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190PubMedCrossRefGoogle Scholar
  144. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. BiolTrace Elem Res 119:77–88Google Scholar
  145. Yarizade K, Hosseini R (2015) Expression analysis of ADS, DBR2, ALDH1 and SQS genes in Artemisia vulgaris hairy root culture under nano cobalt and nano zinc elicitation. Ext J App Sci 3(3):69–76Google Scholar
  146. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M et al (2011) More than the ions: the effect of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367PubMedCrossRefGoogle Scholar
  147. Yugandhar P, Savithramma N (2013) Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.) Hepper. Int J Adv Res 1(8):89–103Google Scholar
  148. Yuvakumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(1):180–190Google Scholar
  149. Zhang C, Yan Q, Cheuk WK, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med 70(2):147–151PubMedCrossRefGoogle Scholar
  150. Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013) Stimulation of artemisinin production in Artemesia annua hairy roots by Ag-SiO2 core shell nanoparticles. Curr Nanosci 9:363–370CrossRefGoogle Scholar
  151. Zhao DX, Fu CX, Han YS, Lu DP (2005a) Effects of elicitation on jaceosidin and hispidulin production in cell suspension cultures of Saussurea medusa. Process Biochem 40(2):739–745CrossRefGoogle Scholar
  152. Zhao J, Davis LC, Verpoorte R (2005b) Elicitor signal transduction leading to production of secondary metabolites. Biotechnol Adv 23:283–333PubMedCrossRefGoogle Scholar
  153. Zhao JL, Zhou LG, Wu JY (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 87:137–144PubMedCrossRefGoogle Scholar
  154. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Element Res 104:83–91CrossRefGoogle Scholar
  155. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pragati Misra
    • 1
    Email author
  • Pradeep Kumar Shukla
    • 2
  • Krishnendu Pramanik
    • 3
  • Sanghdeep Gautam
    • 1
  • Chittaranjan Kole
    • 4
    • 5
  1. 1.Department of Molecular and Cellular Engineering, Jacob School of Biotechnology and BioengineeringSam Higginbottom Institute of Agriculture, Technology and SciencesAllahabadIndia
  2. 2.Department of Biological Sciences, School of Basic SciencesSam Higginbottom Institute of Agriculture, Technology and SciencesAllahabadIndia
  3. 3.Department of Agricultural BiotechnologyBC Agricultural UniversityMohanpurIndia
  4. 4.Bidhan Chandra Agricultural UniversityMohanpurIndia
  5. 5.Jacob School of Biotechnology and BioengineeringSam Higginbottom Institute of Agriculture, Technology and SciencesAllahabadIndia

Personalised recommendations