Skip to main content

Uptake, Translocation, Accumulation, Transformation, and Generational Transmission of Nanoparticles in Plants

  • Chapter
  • First Online:
Plant Nanotechnology

Abstract

The field of plant nanotechnology has recently been up-surged into a new epoch of discovery to dissect the intricate processes and mechanisms for better understanding of plant’s functional biology in response to nanoparticle exposure. This chapter reviews the current scenario of pathways, mechanisms, and patterns of uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. Experimental data support that symplastic route is the dominant and highly regulated pathway for transporting NPs within plants and facilitated by a vast array of carrier proteins, aquaporins, interconnected ion channels, endocytosed pathway, or novel pores for the entry of nanoparticles. Xylem being the most preferred plant tissue along with phloem and stomatal opening for absorption and transportation of nanoparticles. Engineered and carbon-based nanoparticles have shown different responses for their transport and utilization in different plants. Engineered nanomaterials are translocated and accumulated differentially within stems, leaves, trichomes, petioles, and fruits of different plants. At subcellular locations, engineered nanomaterials are accumulated in cell walls, cytoplasm, seldom plastids, nuclei, and small vesicles. Carbon-based nanomaterials have shown superior prospective for internalization. Uptake, accumulation, and generational transmission of NOM-suspended carbon nanopartcles in rice plants have been reported. Uptake and biodistribution of fullerol was confirmed almost in all plant organs including petioles, leaves, flowers, and fruits in bitter melon. Carbon nanotubes have shown the possibilities for effective penetration into seed coat. Single-walled carbon nanotubes have shown their capability to penetrate chloroplasts and accumulate on thylakoids and stroma in spinach, whereas, multi-walled carbon nanotubes were observed in the seeds and root systems of the developed tomato seedlings. It is certain that not a single transportation mechanism, but a diverse array of multiple mechanisms at physiological, biochemical, and molecular levels are involved for penetration, acquisition, and in planta trafficking of nanoparticles. The goal of this chapter is to put individual experimental efforts back together to unveil the possible enigmas of mechanisms of internalization of nanoparticles, pathways of their movement, and patterns of accumulation and their generational transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nano particles. Environ Sci Pollut Res 22:1841–1853

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nano particle-mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102

    Article  CAS  PubMed  Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nano particles with seed pre chilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish J Chem Technol 16(3):25–29

    Google Scholar 

  • AZoNano.com (2013) Nanofibers to be used in drug delivery, gene therapy, crop engineering and environmental monitoring [webpage on the Internet]. AZoM.com Pty. Ltd, Manchester, UK. Updated 11 June 2013. Available from: http://www.azonano.com/article.aspx?ArticleID=114. Accessed 19 April 2014

  • Bali R, Siegel R, Harris AT (2010) Biogenic Pt uptake and nano particle formation in Medicago sativa and Brassica juncea. J Nanopart Res 12:3087–3095

    Article  CAS  Google Scholar 

  • Bhattacharya P, Salonen E, Ke PC (2012) Transformation of engineered nanostructures in the natural environment. In: Barnard AS, Guo H (eds) Nature’s Nano Structures. Pan Stanford Publishing Pte. Ltd, Temasek Boulevard, Singapore, pp 509–536

    Google Scholar 

  • Birbaum K, Brogiolli R, Schellenberg M, Martinoia E, Stark WJ, Gunther D, Limbach L (2010) No evidence for cerium dioxide nano particle translocation in maize plants. Environ Sci Technol 44(22):8418–8423

    Article  CAS  Google Scholar 

  • Borboa L, De la Torre C (1996) The genotoxicity of Zn(II) and Cd(II) in Allium cepa root meristematic cells. New Phytol 134:481–486

    Article  CAS  Google Scholar 

  • Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nano particle effects on the composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173

    Article  CAS  Google Scholar 

  • Burke DJ, Nicole PN, Shu F, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nano particle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and non-functionalized single-walled carbon-nano tubes on root elongation of select crop species. Nanomat Environ 27:1922–1931

    Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205(4411):1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Chang F-P, Kuang L-Y, Huang C-A, Jane W-N, Hung Y, Yue-ie CH, Mou C-Y (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287

    Article  CAS  Google Scholar 

  • Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nano particles by plant and mammalian cells. Small 6:612–617

    Article  CAS  PubMed  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nano materials in higher plants. Nanomaterials 5:851–873

    Article  CAS  Google Scholar 

  • Chutipaijit S (2015) Establishment of condition and nano particle factors influencing plant regeneration from aromatic rice (Oryza sativa). Int J Agric Biol 17:1049–1054

    CAS  Google Scholar 

  • Cicek S, Nadaroglu H (2015) The use of nanotechnology in the agriculture. Adv Nano Res 3(4):207–223

    Google Scholar 

  • Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nano particles through the root of different crop plants. J Nanobiotechnol 8(26):1–8

    Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, Gozalez-Melendi P, Fernandez-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Perez de Luque A, Risueno MC (2009) Nano particle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol. doi:10.1186/1471-2229-9-45

    Google Scholar 

  • Da silva LC, Oliva MA, Azevedo AA, De Araujo MJ (2006) Response of resting a plant species to pollution from an iron palletization factory. Water Air Soil Pollut 75:241–256

    Google Scholar 

  • Davies G, Fataftah A, Cherkasskiy A, Ghabbour EA, Radwan A, Jansen SA, Kolla S, Paciolla MD, Buermann W, Balasubramanian M, Budnick J, Xing B (1997) Tight metal binding by humic acids and its role in biomineralization. J Chem Soc-Dalton Transact 21:4047–4060

    Google Scholar 

  • De la Rosa G, Lopez-Moreno ML, Hernandez-Viescaz J, Montes MO, Peralta-Videa JR, Gardea-Torresdey JL (2011) Toxicity and biotransformation of ZnO nano particles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida. Int J Nanotechnol 8:492–506

    Article  Google Scholar 

  • Deng Y, White JC, Xing B (2014) Interactions between engineered nano materials and agricultural crops: implications for food safety. J Zhejiang Univ SCI A (Appl Phys Eng) 15(8):552–572

    Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–94

    Article  CAS  PubMed  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nano particles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev (3)1:1–5

    Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nano particles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125

    Article  CAS  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano and micro particles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  CAS  PubMed  Google Scholar 

  • Dizdaroglu M (1985) Application of capillary gas-chromatography mass-spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA-repair processes. Ann Biochem 144(2):593–603

    Article  CAS  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303

    Article  CAS  PubMed  Google Scholar 

  • Duan CQ, Wang HX (1995) Cytogenetical toxical effects of heavy metals on Vicia faba and inquires into the Vicia-micronucleus. Acta Bot Sin 37:14–24

    CAS  Google Scholar 

  • Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Mac X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nano particles and metal ions. Environ Sci Nano (Advance Article). doi:10.1039/C5EN00161G

    Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water suspended nano particles. Physiol Planta 134:151–160

    Article  CAS  Google Scholar 

  • Falco WF, Botero ER, Falcão EA, Santiag EF, Bagnato VS, Caires ARL (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nano particles. J Photochem Photobiol A Chem 225:65–71

    Article  CAS  Google Scholar 

  • Galbraith DW (2007) Nano biotechnology: silica breaks through in plants. Nat Nanotechnol 5:272–273

    Article  CAS  Google Scholar 

  • Ganguly S, Das S, Dastidar SG (2014) Effect of zinc sulphide nano particles on germination of seeds of Vigna radiata and their subsequent acceleration of growth in presence of the nano particles. Euro J Biomed Pharma Sci 1(2):273–280

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nano particles inside live alfalfa plants. Nano lett 2:397–401

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Yacaman MJ (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361

    Article  CAS  Google Scholar 

  • Gardea-Torresdey J, Rodriguez E, Parsons JG, Peralta-Videa JR, Meitzner G, Cruz-Jimenez G (2005) Use of ICP and XAS to determine the enhancement of gold phyto extraction by Chilopsis linearis using thiocyanate as a complexing agent. Ann Bioanal Chem 382:347–352

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nano particles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, Mc Nicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nano bionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Melendi P, Fernandez Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Han H, Wang X, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nano tubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841–851

    Article  CAS  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nano particles by live plants. J Nanopart Res 10:691–695

    Article  CAS  Google Scholar 

  • Haverkamp RG, Marshall AT (2009) The mechanism of metal nano particle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463

    Article  CAS  Google Scholar 

  • Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ. doi:10.1016/j.scitotenv.2015.08.029

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184

    Article  CAS  PubMed  Google Scholar 

  • Iversen TG, Frerker N, Sandvig K (2012) Uptake of ricin B-quantum dot nanoparticles by a micro pinocytosis like mechanism. J Nanobiotechnol 10:33

    Article  CAS  Google Scholar 

  • Jaruga P, Kirkali G, Dizdaroglu M (2008) Measurement of formamido pyrimidines in DNA. Free Radical Biol Med 45:1601–1609

    Article  CAS  Google Scholar 

  • Ke PC, Lamm MH (2011) A biophysical perspective of understanding nano particles at large. Phys Chem Chem Phys 13:7273–7283

    Article  CAS  PubMed  Google Scholar 

  • Ke PC, Qiao R (2007) Carbon nano materials in biological systems. J Phys Conden Matt 19(37):373101. doi:10.1088/0953-8984/19/37/373101

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Biris AS (2009) Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507 A1—patent application

    Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nano tubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouhi SM, Lahouti M, Ganjeali A, Entezari MH (2014) Comparative phytotoxicity of ZnO nano particles, ZnO micro particles, and Zn2+ on rapeseed (Brassica napus L.): investigating a wide range of concentrations. Toxicol Environ Chem 96:861–868

    Article  CAS  Google Scholar 

  • Kovalchuk I, Ziemienowicz A, Eudes F, inventors Plantbiosis Ltd., assignee (2012) T-DNA/protein nano-complexes for plant transformation. United States patent US 20120070900 A1, 22 Mar 2012

    Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nano particles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nano particles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Ernest V, Mukherjee A, Chandrasekaran N (2012) In vivo nano toxicity assays in plant models. Meth Mol Biol 926:399–410

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nano conjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012a) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.) Influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carriere M (2012b) Comparative uptake and impact of TiO2 nano particles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nano particles: evidence for internalization and changes in Ag speciation. J Hazard Mater 261:98–106

    Article  CAS  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kwbon HS (2008) Toxicity and bioavailability of copper nano particles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chen X, Gu N (2008) Computational investigation of interaction between nano particles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B 112(51):16647–16653

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nano particles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nano particles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nano materials in rice plants. Small 5:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nano tubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nano particles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Maharramov AM, Ahmadov IS, Ramazanov MA, Aliyeva SQ, Ramazanli VN (2015) Fluorescence emission spectrum of elodea leaves exposed to nano particles. J Biomater Nanobiotechnol 6:135–143

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS-Y, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar H (2014) The impact of silver nano particles on plant biomass and chlorophyll content. Research inventy Int J Eng Sci 4(7):12–20

    Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012a) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J Roy Soc Interf 9(77):3514–3527

    Article  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012b) Toxicity, uptake, and translocation of engineered nano materials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques, vol 1. Elsevier Academic Press, New York, pp 159–180

    Chapter  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nano particulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nano particles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Nedosekin DA, Khodakovskaya MV, Biris AS, Wang D, Xu Y, Villagarcia H, Galanzha EI, Zharov VP (2011) In vivo plant flow cytometry: a first proof-of concept. Cytometry A 79(10):855–865

    Article  PubMed  PubMed Central  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  CAS  PubMed  Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Alessandra M (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59(11):3051–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int J Pharm 359:280–287

    Article  CAS  PubMed  Google Scholar 

  • Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154

    CAS  PubMed  Google Scholar 

  • Patlolla AK (2013) Environmental toxicity monitoring of nanomaterials using Vicia faba GENE-TOX assay. J Nanomed Nanotechnol 4:e129. doi:10.4172/2157-7439.1000e129

    Article  CAS  Google Scholar 

  • Patrick JW, Tyerman SD, Bel AJE (2015) Long-distance transport. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, 2nd edn. Wiley, West Sussex, pp 658–710

    Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332

    Article  PubMed  CAS  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nano particles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nano scale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutri 35(6):905–927

    Article  CAS  Google Scholar 

  • Priestera JH, Gea Y, Mielkea RE, Horsta AM, Moritzb SC, Espinosae K, Gelbf J, Walkerg SL, Nisbetb RM, Ani YJ, Schimelb JP, Palmere RG, Hernandez-Viezcasc JA, Zhaoc L, Gardea-Torresdey JL, Holdena PA (2012) Soybean susceptibility to manufactured nano materials with evidence for food quality and oil fertility interruption. Proc Natl Acad Sci USA 109:14734–14735

    Google Scholar 

  • Răcuciu M, Creangă D (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissues. Rom J Phys 52:395–402

    Google Scholar 

  • Răcuciu M, Creangă D (2009) Cytogenetical changes induced by β-cyclodextrin coated nanoparticles in plant seeds. Rom J Phys 54:125–131

    Google Scholar 

  • Rad JS, Karimi J, Mohsenzadeh S, Rad MS, Moradgholi J (2014) Evaluating SiO2 Nano particles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L. Bull Environ Pharmaco Life Sci 3:194–201

    Google Scholar 

  • Remedios C, Rosario F, Bastos V (2012) Environmental nano particles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 1–8 doi:10.1155/2012/751686

    Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nano particles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roohizadeh G, Majd A, Arbabian S (2015) The effect of sodium silicate and silica nano particles on seed germination and growth in the Vicia faba L. Trop Plant Res 2(2):85–89

    Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nano particles on seed germination and seedling growth of Boswellia ovalifoliolata—an endemic and endangered medicinal tree. Taxon Nano Vision (1, 2 & 3):61–68

    Google Scholar 

  • Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, Quadt A, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7:466–477

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Misukami H, Bianco A, Baba Y (2011a) A functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Ugent KB, Bianco Baba Y (2011b) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Braeckmans K, Habuchi S, Kaji N, Bianco A, Baba Y (2012a) Spatiotemporal visualization of subcellular dynamics of carbon nano tubes. Nano Lett 12:6145–6151

    Article  CAS  PubMed  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Baba Y (2012b) Introducing carbon nano tubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nano particles. Biotechnol Prog 19(1627–1631):44

    Google Scholar 

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nano particles and catalytic role of biomatrix-embedded nano materials. Environ Sci Technol 41:5137–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2011) Phytotoxic and genotoxic effects of ZnO nano particles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248

    Article  PubMed  CAS  Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single wall carbon nanotubes. Am J Bot 97:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Shyla KK, Natarajan N (2014) Customizing Zinc oxide, silver and titanium dioxide nano particles for enhancing groundnut seed quality. Ind J Sci Technol l7:1376–1381

    Google Scholar 

  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nano geno toxicology: the DNA damaging potential of engineered nano materials. Biomaterials 30(23–24):3891–3914

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharmaceut Sci Inven 4(8):25–40

    Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nano tubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3:99–106

    CAS  Google Scholar 

  • Smith H (ed) (1978) The molecular biology of plant cells. University of California Press, Berkeley

    Google Scholar 

  • Spori CL, Prigent G, Schaer M, Crittin M, Matus P, Laroche T, Sikora B, Kaminska I, Fronc K, Elbaum D, Digigow R, Fink A, Ahmadov I, Khalilov R, Ramazanov M, Forró L, Sienkiewicz A (2014) Uptake and biomagnification of multifunctional magnetic and NIR sensitive nano particles by aquatic plants: electron spin resonance, two photon and confocal microscopy studies. In: Proceedings of the Nano-Tera Annual Plenary Meeting, Lausanne, Switzerland, 19–20 May 2014, p 82

    Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nano tubes enhance tomato seed germination and plant growth. Curr Sci 99:274–275

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nano particles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stark WJ (2011) Nano particles in biological systems. Angew Chem Int Ed Engl 50(6):1242–1258

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar R, Gowda N, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 66:235–239

    Article  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Tan XM, Fugetsu B (2007) Multi-walled carbon nano tubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288

    Article  CAS  Google Scholar 

  • Taran N, Batsmanova L, Konotop Y, Okanenko A (2014) A redistribution of elements of metals in plant tissues under treatment by non-ionic colloidal solution of biogenic metal nano particles. Nanoscale Res 9:354–357

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nano particles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Mao H, Zhao H, Huang D, Wang Z (2012a) Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau China. Field Crops Res 135:89–96

    Article  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem- and phloem-based transport of CuO nano particles in maize (Zea mays L). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013a) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013b) Fate of ZnO nano particles in soils and Cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ebbs SD, Chen Y, Ma X (2013c) Trans-generational impact of cerium oxide nano particles on tomato plants. Metallomics 5(6):753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013d) Nano particle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417

    Article  CAS  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitby M, Quirke N (2007) Fluid flow in carbon nano tubes and nano pipes. Nat Nanotechnol 2:87–94

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2012) Ion uptake mechanisms of individual cells and roots: short-distance transport. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Elsevier, London, pp 7–47

    Google Scholar 

  • Wiesner MR, Lowry GV, Casman E, Bertsch PM, Matson CW, Di Giulio RT, Liu J, Hochella MF Jr (2011) Meditations on the ubiquity and mutability of nano-sized materials in the environment. ACS Nano 5(11):8466–8470

    Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nano particles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Zarafshar M, Akbarinia M, Askari H, Hosseini SM, Rahaie M, Struve D (2015) Toxicity assessment of SiO2 nanoparticles to pear seedlings. Int J Nanosci Nanotechnol 11(1):13–22

    Google Scholar 

  • Zhang M, Ellis EA, Cisneros-Zevallos L, Akbulut M (2012) Uptake and translocation of polymeric nano particulate drug delivery systems into ryegrass. RSC Advances 2:9679–9686

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012a) Effect of surface coating and organic matter on the uptake of CeO2–NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012b) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Peng B, Bandyopadhyay S, Corral-Diaz B, Osuna-Avila P, Montes MO, Keller AA, Gardea-Torresdey JL (2014) Alginate modifies the physiological impact of CeO2 nano particles in corn seedlings cultivated in soil. J Environ Sci 26:382–389

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shukla, P.K., Misra, P., Kole, C. (2016). Uptake, Translocation, Accumulation, Transformation, and Generational Transmission of Nanoparticles in Plants. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_8

Download citation

Publish with us

Policies and ethics