Advertisement

Uptake, Translocation, Accumulation, Transformation, and Generational Transmission of Nanoparticles in Plants

  • Pradeep Kumar ShuklaEmail author
  • Pragati Misra
  • Chittaranjan Kole
Chapter

Abstract

The field of plant nanotechnology has recently been up-surged into a new epoch of discovery to dissect the intricate processes and mechanisms for better understanding of plant’s functional biology in response to nanoparticle exposure. This chapter reviews the current scenario of pathways, mechanisms, and patterns of uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. Experimental data support that symplastic route is the dominant and highly regulated pathway for transporting NPs within plants and facilitated by a vast array of carrier proteins, aquaporins, interconnected ion channels, endocytosed pathway, or novel pores for the entry of nanoparticles. Xylem being the most preferred plant tissue along with phloem and stomatal opening for absorption and transportation of nanoparticles. Engineered and carbon-based nanoparticles have shown different responses for their transport and utilization in different plants. Engineered nanomaterials are translocated and accumulated differentially within stems, leaves, trichomes, petioles, and fruits of different plants. At subcellular locations, engineered nanomaterials are accumulated in cell walls, cytoplasm, seldom plastids, nuclei, and small vesicles. Carbon-based nanomaterials have shown superior prospective for internalization. Uptake, accumulation, and generational transmission of NOM-suspended carbon nanopartcles in rice plants have been reported. Uptake and biodistribution of fullerol was confirmed almost in all plant organs including petioles, leaves, flowers, and fruits in bitter melon. Carbon nanotubes have shown the possibilities for effective penetration into seed coat. Single-walled carbon nanotubes have shown their capability to penetrate chloroplasts and accumulate on thylakoids and stroma in spinach, whereas, multi-walled carbon nanotubes were observed in the seeds and root systems of the developed tomato seedlings. It is certain that not a single transportation mechanism, but a diverse array of multiple mechanisms at physiological, biochemical, and molecular levels are involved for penetration, acquisition, and in planta trafficking of nanoparticles. The goal of this chapter is to put individual experimental efforts back together to unveil the possible enigmas of mechanisms of internalization of nanoparticles, pathways of their movement, and patterns of accumulation and their generational transmission.

 Keywords

Nanoparticles Engineered nanomaterials Carbon-based nanomaterials Uptake-mechanism Translocation-pattern Generational transmission 

References

  1. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nano particles. Environ Sci Pollut Res 22:1841–1853CrossRefGoogle Scholar
  2. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nano particle-mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827PubMedCrossRefGoogle Scholar
  3. Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102PubMedCrossRefGoogle Scholar
  4. Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nano particles with seed pre chilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Polish J Chem Technol 16(3):25–29Google Scholar
  5. AZoNano.com (2013) Nanofibers to be used in drug delivery, gene therapy, crop engineering and environmental monitoring [webpage on the Internet]. AZoM.com Pty. Ltd, Manchester, UK. Updated 11 June 2013. Available from: http://www.azonano.com/article.aspx?ArticleID=114. Accessed 19 April 2014
  6. Bali R, Siegel R, Harris AT (2010) Biogenic Pt uptake and nano particle formation in Medicago sativa and Brassica juncea. J Nanopart Res 12:3087–3095CrossRefGoogle Scholar
  7. Bhattacharya P, Salonen E, Ke PC (2012) Transformation of engineered nanostructures in the natural environment. In: Barnard AS, Guo H (eds) Nature’s Nano Structures. Pan Stanford Publishing Pte. Ltd, Temasek Boulevard, Singapore, pp 509–536Google Scholar
  8. Birbaum K, Brogiolli R, Schellenberg M, Martinoia E, Stark WJ, Gunther D, Limbach L (2010) No evidence for cerium dioxide nano particle translocation in maize plants. Environ Sci Technol 44(22):8418–8423CrossRefGoogle Scholar
  9. Borboa L, De la Torre C (1996) The genotoxicity of Zn(II) and Cd(II) in Allium cepa root meristematic cells. New Phytol 134:481–486CrossRefGoogle Scholar
  10. Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nano particle effects on the composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173CrossRefGoogle Scholar
  11. Burke DJ, Nicole PN, Shu F, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nano particle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and non-functionalized single-walled carbon-nano tubes on root elongation of select crop species. Nanomat Environ 27:1922–1931Google Scholar
  13. Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205(4411):1144–1147PubMedCrossRefGoogle Scholar
  14. Chang F-P, Kuang L-Y, Huang C-A, Jane W-N, Hung Y, Yue-ie CH, Mou C-Y (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287CrossRefGoogle Scholar
  15. Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nano particles by plant and mammalian cells. Small 6:612–617PubMedCrossRefGoogle Scholar
  16. Chichiriccò G, Poma A (2015) Penetration and toxicity of nano materials in higher plants. Nanomaterials 5:851–873CrossRefGoogle Scholar
  17. Chutipaijit S (2015) Establishment of condition and nano particle factors influencing plant regeneration from aromatic rice (Oryza sativa). Int J Agric Biol 17:1049–1054Google Scholar
  18. Cicek S, Nadaroglu H (2015) The use of nanotechnology in the agriculture. Adv Nano Res 3(4):207–223Google Scholar
  19. Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nano particles through the root of different crop plants. J Nanobiotechnol 8(26):1–8Google Scholar
  20. Corredor E, Testillano PS, Coronado MJ, Gozalez-Melendi P, Fernandez-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Perez de Luque A, Risueno MC (2009) Nano particle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol. doi: 10.1186/1471-2229-9-45
  21. Da silva LC, Oliva MA, Azevedo AA, De Araujo MJ (2006) Response of resting a plant species to pollution from an iron palletization factory. Water Air Soil Pollut 75:241–256Google Scholar
  22. Davies G, Fataftah A, Cherkasskiy A, Ghabbour EA, Radwan A, Jansen SA, Kolla S, Paciolla MD, Buermann W, Balasubramanian M, Budnick J, Xing B (1997) Tight metal binding by humic acids and its role in biomineralization. J Chem Soc-Dalton Transact 21:4047–4060Google Scholar
  23. De la Rosa G, Lopez-Moreno ML, Hernandez-Viescaz J, Montes MO, Peralta-Videa JR, Gardea-Torresdey JL (2011) Toxicity and biotransformation of ZnO nano particles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida. Int J Nanotechnol 8:492–506CrossRefGoogle Scholar
  24. Deng Y, White JC, Xing B (2014) Interactions between engineered nano materials and agricultural crops: implications for food safety. J Zhejiang Univ SCI A (Appl Phys Eng) 15(8):552–572Google Scholar
  25. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–94PubMedCrossRefGoogle Scholar
  26. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nano particles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev (3)1:1–5Google Scholar
  27. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nano particles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125CrossRefGoogle Scholar
  28. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano and micro particles in the plant environment. Environ Sci Technol 47:4734–4742PubMedCrossRefGoogle Scholar
  29. Dizdaroglu M (1985) Application of capillary gas-chromatography mass-spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA-repair processes. Ann Biochem 144(2):593–603CrossRefGoogle Scholar
  30. Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303PubMedCrossRefGoogle Scholar
  31. Duan CQ, Wang HX (1995) Cytogenetical toxical effects of heavy metals on Vicia faba and inquires into the Vicia-micronucleus. Acta Bot Sin 37:14–24Google Scholar
  32. Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Mac X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nano particles and metal ions. Environ Sci Nano (Advance Article). doi: 10.1039/C5EN00161G
  33. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water suspended nano particles. Physiol Planta 134:151–160CrossRefGoogle Scholar
  34. Falco WF, Botero ER, Falcão EA, Santiag EF, Bagnato VS, Caires ARL (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nano particles. J Photochem Photobiol A Chem 225:65–71CrossRefGoogle Scholar
  35. Galbraith DW (2007) Nano biotechnology: silica breaks through in plants. Nat Nanotechnol 5:272–273CrossRefGoogle Scholar
  36. Ganguly S, Das S, Dastidar SG (2014) Effect of zinc sulphide nano particles on germination of seeds of Vigna radiata and their subsequent acceleration of growth in presence of the nano particles. Euro J Biomed Pharma Sci 1(2):273–280Google Scholar
  37. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nano particles inside live alfalfa plants. Nano lett 2:397–401CrossRefGoogle Scholar
  38. Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Yacaman MJ (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361CrossRefGoogle Scholar
  39. Gardea-Torresdey J, Rodriguez E, Parsons JG, Peralta-Videa JR, Meitzner G, Cruz-Jimenez G (2005) Use of ICP and XAS to determine the enhancement of gold phyto extraction by Chilopsis linearis using thiocyanate as a complexing agent. Ann Bioanal Chem 382:347–352CrossRefGoogle Scholar
  40. Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540PubMedCrossRefGoogle Scholar
  41. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nano particles on soybean chlorophyll. Environ Sci Technol 47:10645–10652PubMedGoogle Scholar
  42. Giraldo JP, Landry MP, Faltermeier SM, Mc Nicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nano bionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408PubMedCrossRefGoogle Scholar
  43. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792PubMedCrossRefGoogle Scholar
  44. Gonzalez-Melendi P, Fernandez Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195PubMedCrossRefGoogle Scholar
  45. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613PubMedCrossRefGoogle Scholar
  46. Han H, Wang X, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nano tubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841–851CrossRefGoogle Scholar
  47. Harris AT, Bali R (2008) On the formation and extent of uptake of silver nano particles by live plants. J Nanopart Res 10:691–695CrossRefGoogle Scholar
  48. Haverkamp RG, Marshall AT (2009) The mechanism of metal nano particle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463CrossRefGoogle Scholar
  49. Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ. doi: 10.1016/j.scitotenv.2015.08.029 Google Scholar
  50. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184PubMedCrossRefGoogle Scholar
  52. Iversen TG, Frerker N, Sandvig K (2012) Uptake of ricin B-quantum dot nanoparticles by a micro pinocytosis like mechanism. J Nanobiotechnol 10:33CrossRefGoogle Scholar
  53. Jaruga P, Kirkali G, Dizdaroglu M (2008) Measurement of formamido pyrimidines in DNA. Free Radical Biol Med 45:1601–1609CrossRefGoogle Scholar
  54. Ke PC, Lamm MH (2011) A biophysical perspective of understanding nano particles at large. Phys Chem Chem Phys 13:7273–7283PubMedCrossRefGoogle Scholar
  55. Ke PC, Qiao R (2007) Carbon nano materials in biological systems. J Phys Conden Matt 19(37):373101. doi: 10.1088/0953-8984/19/37/373101 CrossRefGoogle Scholar
  56. Khodakovskaya MV, Biris AS (2009) Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507 A1—patent applicationGoogle Scholar
  57. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nano tubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135PubMedCrossRefGoogle Scholar
  58. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kouhi SM, Lahouti M, Ganjeali A, Entezari MH (2014) Comparative phytotoxicity of ZnO nano particles, ZnO micro particles, and Zn2+ on rapeseed (Brassica napus L.): investigating a wide range of concentrations. Toxicol Environ Chem 96:861–868CrossRefGoogle Scholar
  60. Kovalchuk I, Ziemienowicz A, Eudes F, inventors Plantbiosis Ltd., assignee (2012) T-DNA/protein nano-complexes for plant transformation. United States patent US 20120070900 A1, 22 Mar 2012Google Scholar
  61. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nano particles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefGoogle Scholar
  62. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nano particles on root cells of Allium cepa. J Hazard Mater 190:613–621PubMedCrossRefGoogle Scholar
  63. Kumari M, Ernest V, Mukherjee A, Chandrasekaran N (2012) In vivo nano toxicity assays in plant models. Meth Mol Biol 926:399–410CrossRefGoogle Scholar
  64. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nano conjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  65. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012a) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.) Influence of diameter and crystal phase. Sci Total Environ 431:197–208PubMedCrossRefGoogle Scholar
  66. Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carriere M (2012b) Comparative uptake and impact of TiO2 nano particles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734PubMedCrossRefGoogle Scholar
  67. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nano particles: evidence for internalization and changes in Ag speciation. J Hazard Mater 261:98–106CrossRefGoogle Scholar
  68. Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  69. Lee WM, An YJ, Yoon H, Kwbon HS (2008) Toxicity and bioavailability of copper nano particles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol chem 27:1915–1921PubMedCrossRefGoogle Scholar
  70. Lei Z, Mingyu S, Xiao W (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79PubMedCrossRefGoogle Scholar
  71. Li Y, Chen X, Gu N (2008) Computational investigation of interaction between nano particles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B 112(51):16647–16653PubMedCrossRefGoogle Scholar
  72. Lin D, Xing B (2007) Phytotoxicity of nano particles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefGoogle Scholar
  73. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nano particles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  74. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nano materials in rice plants. Small 5:1128–1132PubMedCrossRefGoogle Scholar
  75. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nano tubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010PubMedCrossRefGoogle Scholar
  76. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172Google Scholar
  79. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nano particles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefGoogle Scholar
  80. Maharramov AM, Ahmadov IS, Ramazanov MA, Aliyeva SQ, Ramazanli VN (2015) Fluorescence emission spectrum of elodea leaves exposed to nano particles. J Biomater Nanobiotechnol 6:135–143CrossRefGoogle Scholar
  81. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS-Y, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547PubMedCrossRefGoogle Scholar
  82. Mazumdar H (2014) The impact of silver nano particles on plant biomass and chlorophyll content. Research inventy Int J Eng Sci 4(7):12–20Google Scholar
  83. Miralles P, Johnson E, Church TL, Harris AT (2012a) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J Roy Soc Interf 9(77):3514–3527CrossRefGoogle Scholar
  84. Miralles P, Church TL, Harris AT (2012b) Toxicity, uptake, and translocation of engineered nano materials in vascular plants. Environ Sci Technol 46(17):9224–9239PubMedCrossRefGoogle Scholar
  85. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques, vol 1. Elsevier Academic Press, New York, pp 159–180CrossRefGoogle Scholar
  86. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  87. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nano particulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  88. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nano particles to algae, plants, and fungi. Ecotoxicology 17:372–386PubMedCrossRefGoogle Scholar
  89. Nedosekin DA, Khodakovskaya MV, Biris AS, Wang D, Xu Y, Villagarcia H, Galanzha EI, Zharov VP (2011) In vivo plant flow cytometry: a first proof-of concept. Cytometry A 79(10):855–865PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557PubMedCrossRefGoogle Scholar
  91. Onelli E, Prescianotto-Baschong C, Caccianiga M, Alessandra M (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59(11):3051–3068PubMedPubMedCentralCrossRefGoogle Scholar
  92. Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int J Pharm 359:280–287PubMedCrossRefGoogle Scholar
  93. Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154PubMedGoogle Scholar
  94. Patlolla AK (2013) Environmental toxicity monitoring of nanomaterials using Vicia faba GENE-TOX assay. J Nanomed Nanotechnol 4:e129. doi: 10.4172/2157-7439.1000e129 CrossRefGoogle Scholar
  95. Patrick JW, Tyerman SD, Bel AJE (2015) Long-distance transport. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, 2nd edn. Wiley, West Sussex, pp 658–710Google Scholar
  96. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332PubMedCrossRefGoogle Scholar
  97. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nano particles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131PubMedCrossRefGoogle Scholar
  98. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nano scale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutri 35(6):905–927CrossRefGoogle Scholar
  99. Priestera JH, Gea Y, Mielkea RE, Horsta AM, Moritzb SC, Espinosae K, Gelbf J, Walkerg SL, Nisbetb RM, Ani YJ, Schimelb JP, Palmere RG, Hernandez-Viezcasc JA, Zhaoc L, Gardea-Torresdey JL, Holdena PA (2012) Soybean susceptibility to manufactured nano materials with evidence for food quality and oil fertility interruption. Proc Natl Acad Sci USA 109:14734–14735Google Scholar
  100. Răcuciu M, Creangă D (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissues. Rom J Phys 52:395–402Google Scholar
  101. Răcuciu M, Creangă D (2009) Cytogenetical changes induced by β-cyclodextrin coated nanoparticles in plant seeds. Rom J Phys 54:125–131Google Scholar
  102. Rad JS, Karimi J, Mohsenzadeh S, Rad MS, Moradgholi J (2014) Evaluating SiO2 Nano particles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L. Bull Environ Pharmaco Life Sci 3:194–201Google Scholar
  103. Remedios C, Rosario F, Bastos V (2012) Environmental nano particles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 1–8 doi: 10.1155/2012/751686
  104. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nano particles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  105. Roohizadeh G, Majd A, Arbabian S (2015) The effect of sodium silicate and silica nano particles on seed germination and growth in the Vicia faba L. Trop Plant Res 2(2):85–89Google Scholar
  106. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nano particles on seed germination and seedling growth of Boswellia ovalifoliolata—an endemic and endangered medicinal tree. Taxon Nano Vision (1, 2 & 3):61–68Google Scholar
  107. Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, Quadt A, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7:466–477PubMedCrossRefGoogle Scholar
  108. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  109. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Misukami H, Bianco A, Baba Y (2011a) A functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270PubMedCrossRefGoogle Scholar
  110. Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Ugent KB, Bianco Baba Y (2011b) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499PubMedCrossRefGoogle Scholar
  111. Serag MF, Braeckmans K, Habuchi S, Kaji N, Bianco A, Baba Y (2012a) Spatiotemporal visualization of subcellular dynamics of carbon nano tubes. Nano Lett 12:6145–6151PubMedCrossRefGoogle Scholar
  112. Serag MF, Kaji N, Tokeshi M, Baba Y (2012b) Introducing carbon nano tubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400CrossRefGoogle Scholar
  113. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nano particles. Biotechnol Prog 19(1627–1631):44Google Scholar
  114. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nano particles and catalytic role of biomatrix-embedded nano materials. Environ Sci Technol 41:5137–5142PubMedPubMedCentralCrossRefGoogle Scholar
  115. Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2011) Phytotoxic and genotoxic effects of ZnO nano particles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248PubMedCrossRefGoogle Scholar
  116. Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single wall carbon nanotubes. Am J Bot 97:1602–1609PubMedCrossRefGoogle Scholar
  117. Shyla KK, Natarajan N (2014) Customizing Zinc oxide, silver and titanium dioxide nano particles for enhancing groundnut seed quality. Ind J Sci Technol l7:1376–1381Google Scholar
  118. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nano geno toxicology: the DNA damaging potential of engineered nano materials. Biomaterials 30(23–24):3891–3914PubMedCrossRefGoogle Scholar
  119. Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharmaceut Sci Inven 4(8):25–40Google Scholar
  120. Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nano tubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3:99–106Google Scholar
  121. Smith H (ed) (1978) The molecular biology of plant cells. University of California Press, BerkeleyGoogle Scholar
  122. Spori CL, Prigent G, Schaer M, Crittin M, Matus P, Laroche T, Sikora B, Kaminska I, Fronc K, Elbaum D, Digigow R, Fink A, Ahmadov I, Khalilov R, Ramazanov M, Forró L, Sienkiewicz A (2014) Uptake and biomagnification of multifunctional magnetic and NIR sensitive nano particles by aquatic plants: electron spin resonance, two photon and confocal microscopy studies. In: Proceedings of the Nano-Tera Annual Plenary Meeting, Lausanne, Switzerland, 19–20 May 2014, p 82Google Scholar
  123. Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nano tubes enhance tomato seed germination and plant growth. Curr Sci 99:274–275Google Scholar
  124. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nano particles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  125. Stark WJ (2011) Nano particles in biological systems. Angew Chem Int Ed Engl 50(6):1242–1258PubMedCrossRefGoogle Scholar
  126. Sudhakar R, Gowda N, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 66:235–239CrossRefGoogle Scholar
  127. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402PubMedCrossRefGoogle Scholar
  128. Tan XM, Fugetsu B (2007) Multi-walled carbon nano tubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288CrossRefGoogle Scholar
  129. Taran N, Batsmanova L, Konotop Y, Okanenko A (2014) A redistribution of elements of metals in plant tissues under treatment by non-ionic colloidal solution of biogenic metal nano particles. Nanoscale Res 9:354–357CrossRefGoogle Scholar
  130. Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nano particles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  131. Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5(1):30–42PubMedCrossRefGoogle Scholar
  132. Wang J, Mao H, Zhao H, Huang D, Wang Z (2012a) Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau China. Field Crops Res 135:89–96CrossRefGoogle Scholar
  133. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem- and phloem-based transport of CuO nano particles in maize (Zea mays L). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  134. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013a) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449PubMedCrossRefGoogle Scholar
  135. Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013b) Fate of ZnO nano particles in soils and Cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830PubMedCrossRefGoogle Scholar
  136. Wang Q, Ebbs SD, Chen Y, Ma X (2013c) Trans-generational impact of cerium oxide nano particles on tomato plants. Metallomics 5(6):753–759PubMedCrossRefGoogle Scholar
  137. Wang WN, Tarafdar JC, Biswas P (2013d) Nano particle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417CrossRefGoogle Scholar
  138. Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605PubMedPubMedCentralCrossRefGoogle Scholar
  139. Whitby M, Quirke N (2007) Fluid flow in carbon nano tubes and nano pipes. Nat Nanotechnol 2:87–94PubMedCrossRefGoogle Scholar
  140. White PJ (2012) Ion uptake mechanisms of individual cells and roots: short-distance transport. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Elsevier, London, pp 7–47Google Scholar
  141. Wiesner MR, Lowry GV, Casman E, Bertsch PM, Matson CW, Di Giulio RT, Liu J, Hochella MF Jr (2011) Meditations on the ubiquity and mutability of nano-sized materials in the environment. ACS Nano 5(11):8466–8470Google Scholar
  142. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nano particles. Toxicol Lett 158:122–132PubMedCrossRefGoogle Scholar
  143. Zarafshar M, Akbarinia M, Askari H, Hosseini SM, Rahaie M, Struve D (2015) Toxicity assessment of SiO2 nanoparticles to pear seedlings. Int J Nanosci Nanotechnol 11(1):13–22Google Scholar
  144. Zhang M, Ellis EA, Cisneros-Zevallos L, Akbulut M (2012) Uptake and translocation of polymeric nano particulate drug delivery systems into ryegrass. RSC Advances 2:9679–9686CrossRefGoogle Scholar
  145. Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012a) Effect of surface coating and organic matter on the uptake of CeO2–NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138PubMedCrossRefGoogle Scholar
  146. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012b) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8CrossRefGoogle Scholar
  147. Zhao L, Peralta-Videa JR, Peng B, Bandyopadhyay S, Corral-Diaz B, Osuna-Avila P, Montes MO, Keller AA, Gardea-Torresdey JL (2014) Alginate modifies the physiological impact of CeO2 nano particles in corn seedlings cultivated in soil. J Environ Sci 26:382–389CrossRefGoogle Scholar
  148. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92PubMedCrossRefGoogle Scholar
  149. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pradeep Kumar Shukla
    • 1
    Email author
  • Pragati Misra
    • 2
  • Chittaranjan Kole
    • 3
    • 4
  1. 1.Department of Biological Sciences, School of Basic SciencesSam Higginbottom Institute of Agriculture, Technology and SciencesAllahabadIndia
  2. 2.Department of Molecular and Cellular Engineering, Jacob School of Biotechnology and BioengineeringSam Higginbottom Institute of Agriculture, Technology and SciencesAllahabadIndia
  3. 3.Bidhan Chandra Agricultural UniversityMohanpurIndia
  4. 4.Jacob School of Biotechnology and BioengineeringSam Higginbottom Institute of Agriculture, Technology and SciencesAllahabadIndia

Personalised recommendations