Molecular Mechanism of Plant–Nanoparticle Interactions

  • Shweta JhaEmail author
  • Ramesh Namdeo Pudake


Research and development in the field of nanotechnology are rapidly progressing in all aspects of human life. Recently, the use of engineered nanomaterial (ENM) is being conceptualized in the field of agriculture and food industry. These ENMs are often released into the environment and pose toxicity risk due to potential uptake by crop plants. Standard developmental and physiological methods to measure phytotoxicity including seed germination, root elongation, and enzymatic assays are not sensitive enough while evaluating nanoparticle toxicity to terrestrial plant species. Also, unique properties of nanomaterials allow them to interact with biological systems. Understanding the nature of interactions between nanoparticles and plants is crucial for assessing their uptake, distribution, and toxicity associated with exposure of plants to nanoparticles. However, little progress has been made toward understanding the impact of nanomaterials at molecular level, which is an important step in evaluation of the possible mechanisms of observed effects in planta. Analysis of changes in gene expression through transcriptomics constitutes a powerful approach toward understanding the mechanism of phytotoxicity and molecular responses of plants exposed to nanoparticles. Also, global protein profiling, emerging as a new field “nanotoxicoproteomics,” can be used for understanding plant responses to toxic nanomaterials. The present chapter reviews the current knowledge on phytotoxicity assessment and interactions of nanoparticles with plants at the cellular level and discusses the future aspects to improve our knowledge of this field.


Nanoparticles Nano-ecotoxicology Nano-toxicogenomics Nano-toxicoproteomics Phytotoxicity Risk assessment 



SJ gratefully acknowledges Science and Engineering Research Board, Department of Science & Technology, Government of India for DST-SERB Young Scientist grant (SB/YS/LS-39/2014), University Grants Commission, India, for UGC start-up grant (F.30-50/2014-BSR), and Special Assistance Program (UGC-SAP-CAS) in the Centre for Advanced Studies in Botany, J.N.V. University, Jodhpur.

RNP gratefully acknowledges the funding under Start-up Research Grant (Life Sciences) by Science and Engineering Research Board, Department of Science & Technology, Government of India (SB/FT/LS-104/2012).

The authors declare no financial or commercial conflict of interest.


  1. Abdelhamid HN, Wu H-F (2015) Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Anal Chem 65:30–46CrossRefGoogle Scholar
  2. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agri Sci Technol 2:815–823Google Scholar
  3. Aken BV (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219PubMedCrossRefGoogle Scholar
  4. Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE et al (2006) Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asharani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290PubMedCrossRefGoogle Scholar
  6. Asharani PV, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP (2012) Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3:1–14CrossRefGoogle Scholar
  7. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32:577–584CrossRefGoogle Scholar
  8. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827PubMedCrossRefGoogle Scholar
  9. Barkla BJ, Vera-Estrella R, Pantoja O (2013) Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 13:1801–1815PubMedCrossRefGoogle Scholar
  10. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857PubMedCrossRefGoogle Scholar
  11. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317PubMedCrossRefGoogle Scholar
  12. Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinf 1(4):282–285Google Scholar
  13. Boverhof DR, Zacharewski TR (2005) Toxicogenomics in risk assessment: applications and needs. Toxicol Sci 89:352–360PubMedCrossRefGoogle Scholar
  14. Burklew CE, Ashlock J, Winfrey WB, Zhang BH (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7Google Scholar
  15. Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449CrossRefGoogle Scholar
  16. Chen C, Unrine JM, Judy JD, Lewis RW, Guo J, McNear DH Jr, Tsyusko OV (2015) Toxicogenomic responses of the model legume Medicago truncatula to aged biosolids containing a mixture of nanomaterials (TiO2, Ag, and ZnO) from a pilot wastewater treatment plant. Environ Sci Technol 49:8759–8768PubMedCrossRefGoogle Scholar
  17. Chu H, Kim HJ, Kim JS, Kim MS, Yoon BD, Park HJ, Kim CY (2012) A nanosized Ag-silica hybrid complex prepared by gamma-irradiation activates the defense response in Arabidopsis. Radiat Phys Chem 81:180–184CrossRefGoogle Scholar
  18. Craig M, Jason CW (2011) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 26: n/a. doi: 10.1002/tox.20667
  19. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589PubMedCrossRefGoogle Scholar
  20. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125CrossRefGoogle Scholar
  21. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090PubMedCrossRefGoogle Scholar
  22. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefGoogle Scholar
  23. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581PubMedCrossRefGoogle Scholar
  24. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefGoogle Scholar
  25. Farrag HF (2015) Evaluation of the growth responses of Lemna gibba L. (duckweed) exposed to silver and zinc oxide nanoparticles. World Appl Sci J 33(2):190–202Google Scholar
  26. Frazier TP, Burklew CE, Zhang BH (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genom 14:75–83CrossRefGoogle Scholar
  27. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M et al (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Bio Metals 21:211–217Google Scholar
  28. Gao Y, Holland RD, Yu LR (2009) Quantitative proteomics for drug toxicity. Brief Funct Genom Proteom 8:158–166CrossRefGoogle Scholar
  29. García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genom 16:341CrossRefGoogle Scholar
  30. Ghodake G, Seo YD, Park DH, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelect Optoelect 5:157–160CrossRefGoogle Scholar
  31. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mat 186:952–955CrossRefGoogle Scholar
  32. Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408PubMedCrossRefGoogle Scholar
  33. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monitor 13:1145–1155CrossRefGoogle Scholar
  34. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559PubMedCrossRefGoogle Scholar
  35. Handy RD, Kamme F, Lead JR, Hasselov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314PubMedCrossRefGoogle Scholar
  36. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170(1–3):346–352PubMedCrossRefGoogle Scholar
  37. Hood E (2004) Nanotechnology: looking as we leap. Environ Health Perspect 112:a740–a749PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934PubMedCrossRefGoogle Scholar
  39. Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644PubMedGoogle Scholar
  40. Khodakovskaya MV, Biris AS (2015) Method of using carbon nanotubes to affect seed germination and plant growth. US Patent Application 14/716, 117Google Scholar
  41. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108(3):1028–1033PubMedCrossRefGoogle Scholar
  42. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135PubMedCrossRefGoogle Scholar
  43. Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806CrossRefGoogle Scholar
  44. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851PubMedCrossRefGoogle Scholar
  45. Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 5:436–467CrossRefGoogle Scholar
  46. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefGoogle Scholar
  47. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interf 5:7965–7973CrossRefGoogle Scholar
  48. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619Google Scholar
  49. Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62PubMedCrossRefGoogle Scholar
  50. Landa P, Prerostova S, Petrova S, Knirsch V, Vankova R, Vanek T (2015) The transcriptomic response of Arabidopsis thaliana to Zinc Oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc. Environ Sci Technol 49(24):14537–14545PubMedCrossRefGoogle Scholar
  51. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carrière M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Physics 304(1): Article ID 012057Google Scholar
  52. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefGoogle Scholar
  53. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499PubMedCrossRefGoogle Scholar
  54. Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20:848–854CrossRefGoogle Scholar
  55. Lim HK, Asharani PV, Hande MP (2012) Enhanced genotoxicity of silver nanoparticles in DNA repair deficient mammalian cells. Front Genet 3:104–116PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefGoogle Scholar
  57. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  58. Lindgren AL (2014) The effects of silver nitrate and silver nanoparticles on Chlamydomonas reinhardtii: a proteomic approach. Degree Project, Department of Biology and Environmental Sciences, University of Gothenburg, GermanyGoogle Scholar
  59. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010PubMedCrossRefGoogle Scholar
  60. López-Moreno M, de la Rosa G, Hernandez-Viezcas J, Peralta-Videa J, Gardea-Torresdey J (2010a) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693PubMedPubMedCentralCrossRefGoogle Scholar
  61. López-Moreno M, de la Rosa G, Hernandez-Viezcas J, Castillo-Michel H, Botez C, Peralta-Videa J, Gardea-Torresdey J (2010b) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172Google Scholar
  63. Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefGoogle Scholar
  64. Ma CX, Chhikara S, Xing BS, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778CrossRefGoogle Scholar
  65. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–278PubMedCrossRefGoogle Scholar
  66. Marmiroli M, Pagano L, Sardaro MLS, Villani M, Marmiroli N (2014) Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots. Environ Sci Technol 48:5902–5909PubMedCrossRefGoogle Scholar
  67. Marmiroli M, Imperiale D, Pagano L, Villani M, Zappettini A, Marmiroli N (2015) The proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots, and its correlation with the transcriptomic response. Front Plant Sci 6Google Scholar
  68. Mattiello A, Filippi A, Pošćić F, Musetti R, Salvatici MC, Giordano C, Vischi M, Bertolini A, Marchiol L (2015) Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 6Google Scholar
  69. Matysiak M, Kapka-Skrzypczak L, Brzóska K, Gutleb AC, Kruszewski M (2015) Proteomic approach to nanotoxicity. J Proteom. doi: 10.1016/j.jprot.2015.10.025 Google Scholar
  70. Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of Silver nanoparticles on Oryza sativa. Int J Chem Technol Res 3(3):1494–1500Google Scholar
  71. Merrick BA, Bruno ME (2004) Genomic and proteomic profiling for biomarkers and signature profiles of toxicity. Curr Opin Mol Ther 6:600–607PubMedGoogle Scholar
  72. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239PubMedCrossRefGoogle Scholar
  73. Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nano particles toxicity on Oryza sativa L. Ecotoxicol Environ Safe 108:335–339CrossRefGoogle Scholar
  74. Mustafa G, Sakata K, Hossain Z, Komatsu S (2015a) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteom 122:100–118CrossRefGoogle Scholar
  75. Mustafa G, Sakata K, Komatsu S (2015b) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteom 128:280–297CrossRefGoogle Scholar
  76. Nair PMG, Chung IM (2014a) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res 21:8858–8869CrossRefGoogle Scholar
  77. Nair PMG, Chung IM (2014b) Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles. Bull Environ Contam Toxicol 92:719–725CrossRefGoogle Scholar
  78. Nair PM, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Safe 113:302–313CrossRefGoogle Scholar
  79. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  80. Nuwaysir EF, Bittner M, Trent J, Barrett JC, Afshari CA (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinogen 24:153–159CrossRefGoogle Scholar
  81. Panda KK, Achary MM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN et al (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105PubMedCrossRefGoogle Scholar
  82. Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649–1662PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pham CH, Yi J, Gu MB (2012) Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol Environ Safe 78:239–245CrossRefGoogle Scholar
  84. Poma A, Di Giorgio ML (2008) Toxicogenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: a review. Curr Genom 9:571–585CrossRefGoogle Scholar
  85. Poynton H, Vulpe C (2009) Ecotoxicogenomics: emerging technologies for emerging contaminants. J Am Water Resour Assoc 45:83–96CrossRefGoogle Scholar
  86. Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A (2015) Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. J Agric Food Chem 63:2606–2617PubMedCrossRefGoogle Scholar
  87. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105–114CrossRefGoogle Scholar
  88. Remédios C, Rosário F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 2012:1–8. doi: 10.1155/2012/751686 CrossRefGoogle Scholar
  89. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  90. Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112APubMedCrossRefGoogle Scholar
  91. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197Google Scholar
  92. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915PubMedCrossRefGoogle Scholar
  94. Shen C-X, Zhang Q-F, Li J, Bi F-C, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609PubMedCrossRefGoogle Scholar
  95. Shiny PJ, Mukerjee A, Chandrasekaran N (2013) Comparative assessment of the phytotoxicity of silver and platinum nanoparticles. Proceedings of the international conference on advanced nanomaterials & emerging engineering technologies. Sathyabama University, Chennai, pp 391–393Google Scholar
  96. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254PubMedGoogle Scholar
  97. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  98. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  99. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impact of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedCrossRefGoogle Scholar
  100. Thiruvengadam M, Gurunathan S, Chung IM (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252:1031–1046PubMedCrossRefGoogle Scholar
  101. Thomas CR, George S, Horst AM, Ji ZX, Miller RJ, Peralta-Videa JR, Xia TA, Pokhrel S, Madler L, Gardea-Torresdey JL et al (2011) Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5:13–20PubMedCrossRefGoogle Scholar
  102. Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR (2015) Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ Toxicol Chem 34:70–83PubMedCrossRefGoogle Scholar
  103. United States Environmental Protection Agency (1996) Ecological test guidelines (OPPTS 850, 4200): seed germination/root elongation toxicity test. US EPA, Washington, DCGoogle Scholar
  104. United States Environmental Protection Agency (2007) Nanotechnology White Paper: Tech. Rep. EPA 100/B-07/001, Science Policy Council, US EPA, Washington, DCGoogle Scholar
  105. Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8(7):e68752PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148PubMedCrossRefGoogle Scholar
  107. Wang Q, Zhao S, Zhao Y, Rui Q, Wang D (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901CrossRefGoogle Scholar
  108. Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5:936–948PubMedCrossRefGoogle Scholar
  109. Wetmore BA, Merrick BA (2004) Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol 32(6):619–642PubMedCrossRefGoogle Scholar
  110. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:4Google Scholar
  111. Xu LM, Takemura T, Xu MS, Hanagata N (2011) Toxicity of silver nanoparticles as assessed by global gene expression analysis. Mater Express 1:74–79CrossRefGoogle Scholar
  112. Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118PubMedCrossRefGoogle Scholar
  113. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122PubMedCrossRefGoogle Scholar
  114. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photo reduction. Biol Trace Elem Res 119:77–88PubMedCrossRefGoogle Scholar
  115. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7:e47674PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yruela I (2013) Transition metals in plant photosynthesis. Metallomics 5(9):1090–1109PubMedCrossRefGoogle Scholar
  117. Ze YG, Liu C, Wang L, Hong MM, Hong FS (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141PubMedCrossRefGoogle Scholar
  118. Zhang BH, Pan XP, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16PubMedCrossRefGoogle Scholar
  119. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zheng L, Hong F, Lv S, Liu C (2004) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 101:1–9CrossRefGoogle Scholar
  121. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biotechnology Lab, Department of Botany (UGC-Centre of Advanced Study)Jai Narain Vyas UniversityJodhpurIndia
  2. 2.Amity Institute of NanotechnologyAmity University Uttar PradeshNoidaIndia

Personalised recommendations