Effect of Nanoparticles on Plants with Regard to Physiological Attributes

  • M. Sheikh Mohamed
  • D. Sakthi KumarEmail author


The growth parameters of plants are influenced by various biotic and abiotic factors. The increased interference of humans with the environment has led to heightened concern over such activities on the living systems, including plants. With tremendous progress being made in the field of engineering, manufacturing, construction, etc., onus has shifted to the possible effects of such developments on the ecosystem. Nanotechnology has emerged as an indispensable tool for the future, with its reach spanning across diverse domains. Such a rapid advance has resulted in the exodus of various types of nanomaterials into the environment. Thus, it becomes essential to understand the imminent effects, either advantageous or deleterious, of these nanomaterials on the living subjects advertently or inadvertently exposed to them. Numerous studies have focused on the effects of such nanomaterials in the nanoparticulate form on the mammalian system, with increased studies on the plant system as well. Due to the complex nature of uptake and translocation mechanism present in plants, it has been relatively difficult to unanimously devise a general dataset of the effects that nanoparticles (NPs) have on them. Research over the past years has documented mostly toxic effects of the NPs, either during the germination stage or with respect to the shoot–root length, while few others have explored the possibilities of utilizing them as carriers for chemicals as herbicides, pesticides, fertilizers, or in some cases genes. There have been numerous contradictory findings with some reports suggesting growth enhancing effects and others observing retarding effects of similar NPs on similar or different plant species. Such contradictions and lack of conclusive observations has slowed down the impact of nanotechnology in the agriculture industry when compared with the medical scene. This scenario demands a comprehensive calibration of the analysis and interpretation of NP–plant interaction and effects thereof from the physiological, biochemical, and photosynthetic level to the molecular level to decisively devise a verdict on the actual effects of nanoparticles on the plant system. This chapter summarizes the research conducted so far in this field and attempts at providing an outlook for the future.


Nanotechnology Nanoparticles Plants Physiological Biochemical Photosynthesis Toxicity 


  1. Amooaghaie R, Tabatabaei F, Ali-mohammad A (2015) Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf 113:259PubMedCrossRefGoogle Scholar
  2. Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834PubMedCrossRefGoogle Scholar
  3. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303CrossRefGoogle Scholar
  4. Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32:577CrossRefGoogle Scholar
  5. Bao-shan L, Shao-qi D, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nano-structured silicon dioxide) on growth of Changbai larch seedlings. J Forest Res 15:138CrossRefGoogle Scholar
  6. Barazzouk S, Kamat PV, Hotchandani S (2005) Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J Phys Chem B 109:716PubMedCrossRefGoogle Scholar
  7. Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850PubMedCrossRefGoogle Scholar
  8. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387PubMedCrossRefGoogle Scholar
  9. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212PubMedCrossRefGoogle Scholar
  10. Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4:203CrossRefGoogle Scholar
  11. Beyer SR, Ullrich S, Kudera S, Gardiner AT, Cogdell RJ, Kohler J (2011) Hybrid nanostructures for enhanced light-harvesting: plasmon induced increase in fluorescence from individual photosynthetic pigment-protein complexes. Nano Lett 11:4897PubMedCrossRefGoogle Scholar
  12. Bhati-Kushwaha H, Kaur A, Malik CP (2013) The synthesis and role of biogenic nanoparticles in overcoming chilling stress. Indian J Plant Sci 2:54Google Scholar
  13. Boghossian AA, Sen F, Gibbons BM, Sen S, Faltermeier SM, Giraldo JP, Zhang CT, Zhang J, Heller DA, Strano MS (2013) Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv Energy Mater 3:881CrossRefGoogle Scholar
  14. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of Tobacco (Nicotiana tabacum). PLoS ONE 7:1CrossRefGoogle Scholar
  15. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605CrossRefGoogle Scholar
  16. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922Google Scholar
  17. Carvalho RF, Piotto FA, Schmidt D, Peters LP, Monteiro CC, Azevedo RA (2011) Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Sci Agri 68:598Google Scholar
  18. Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083PubMedCrossRefGoogle Scholar
  19. Cossins D (2014) Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The scientist, news & opinion.–Nanoparticles-Augment-Plant-Functions/
  20. Crabtree RH (1998) A new type of hydrogen bond. Science 282:2000CrossRefGoogle Scholar
  21. De la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161Google Scholar
  22. Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155:283PubMedCrossRefGoogle Scholar
  23. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91PubMedCrossRefGoogle Scholar
  24. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:e1CrossRefGoogle Scholar
  25. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nano Res 14:1CrossRefGoogle Scholar
  26. Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525CrossRefGoogle Scholar
  27. El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42PubMedCrossRefGoogle Scholar
  28. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318PubMedCrossRefGoogle Scholar
  29. Falco WF, Botero ER, Falcao EA, Santiago EF, Bagnato VS, Caires ARL (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J Photochem Photobiol A 225:65CrossRefGoogle Scholar
  30. Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nano-sized titanium dioxide on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101PubMedCrossRefGoogle Scholar
  31. Feizi H, Amirmoradi S, Abdollahi F, Jahedi Pour S (2013a) Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annu Rev Res Biol 3:814Google Scholar
  32. Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P (2013b) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506PubMedCrossRefGoogle Scholar
  33. Foltete AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515PubMedCrossRefGoogle Scholar
  34. Gajanan G, Deuk SY, Donghee P, Sung LD (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5:157CrossRefGoogle Scholar
  35. Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272PubMedCrossRefGoogle Scholar
  36. Gao FQ, Hong FS, Liu C, Zheng L, Su MY (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco-Rubisco activase. Biol Trace Elem Res 111:286CrossRefGoogle Scholar
  37. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211PubMedCrossRefGoogle Scholar
  38. Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63PubMedCrossRefGoogle Scholar
  39. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effect of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645PubMedGoogle Scholar
  40. Ghodake G, Seo YD, Lee DS (2010) Hazardous phototoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Nanoelect Optoelect 5:157CrossRefGoogle Scholar
  41. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400PubMedCrossRefGoogle Scholar
  42. Gomez-Garay A, Pintos B, Manzanera JA, Lobo C, Villalobos N, Martin L (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea In vitro plantlets. Biol Trace Elem Res 161:143PubMedCrossRefGoogle Scholar
  43. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1Google Scholar
  44. Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7:620PubMedCrossRefGoogle Scholar
  45. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481CrossRefGoogle Scholar
  46. Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory–greensys, Jeju, Korea, 6–11 OctGoogle Scholar
  47. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pol 159:1551CrossRefGoogle Scholar
  48. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87Google Scholar
  49. Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612Google Scholar
  50. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346PubMedCrossRefGoogle Scholar
  51. Hong F, Yang P, Gao FQ, Liu C, Zheng L (2005a) Effect of nano-TiO2 on spectral characterization of photosystem particles from spinach. Chem Res Chin Univ 21:196Google Scholar
  52. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005b) Effect of nano-TiO2 on photo-chemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269PubMedCrossRefGoogle Scholar
  53. Hong F, Yang F, Ma ZN, Zhou J, Liu C, Wu C, Yang P (2005c) Influences of nano-TiO2 on the chloroplast ageing of spinach under light. Biol Trace Elem Res 104:249PubMedCrossRefGoogle Scholar
  54. Hong J, Peralta-Videa Jose R, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376PubMedCrossRefGoogle Scholar
  55. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanotechnol 12:1Google Scholar
  56. Ikhtiar R, Begum P, Watari F, Fugetsu B (2013) Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca sativa). Nano Biomed 5:18Google Scholar
  57. Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo 41:201Google Scholar
  58. Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremed 15:142CrossRefGoogle Scholar
  59. Jiang H, Liu JK, Wang JD, Lu Y, Zhang M, Yang XH, Hong DJ (2014) The biotoxicity of hydroxyapatite nanoparticles to the plant growth. J Hazard Mater 270:71PubMedCrossRefGoogle Scholar
  60. Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328PubMedCrossRefGoogle Scholar
  61. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49Google Scholar
  62. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128PubMedCrossRefGoogle Scholar
  63. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115PubMedCrossRefGoogle Scholar
  64. Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477PubMedCrossRefGoogle Scholar
  65. Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113PubMedCrossRefGoogle Scholar
  66. Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117PubMedCrossRefGoogle Scholar
  67. Kole C, Kole P, Randunu RK, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape of CdSe–TiO2 architecture. J Amer Chem Soc 130:4007Google Scholar
  69. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem 47:51CrossRefGoogle Scholar
  70. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462PubMedCrossRefGoogle Scholar
  71. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613PubMedCrossRefGoogle Scholar
  72. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interf 5:7965CrossRefGoogle Scholar
  73. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carriere M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys: Conf Ser 304:012057Google Scholar
  74. Larue C, Laurette H. Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Tot Ennviron 431:197Google Scholar
  75. Le V, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  76. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to terrestrial plants Phaseolus radiatus (Mung bean) and Triticum aestivum (Wheat); plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915PubMedCrossRefGoogle Scholar
  77. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669PubMedCrossRefGoogle Scholar
  78. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491PubMedCrossRefGoogle Scholar
  79. Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68PubMedCrossRefGoogle Scholar
  80. Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-Beta radiation. Biol Trace Elem Res 121:69PubMedCrossRefGoogle Scholar
  81. Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing For Univ (Natl Sci Edn) 36:161Google Scholar
  82. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243PubMedCrossRefGoogle Scholar
  83. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128PubMedCrossRefGoogle Scholar
  84. Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122:168PubMedCrossRefGoogle Scholar
  85. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel Botez CE, Peralta-Videa JR, Gardea- Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research on effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168Google Scholar
  88. Ma L, Liu C, Qu C, Yin S, Liu J, Gao F, Hong F (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122:168CrossRefGoogle Scholar
  89. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053PubMedCrossRefGoogle Scholar
  90. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768Google Scholar
  91. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 1(696535). doi: 10.1155/2011/696535
  92. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornam Hortic Plants 3:25Google Scholar
  93. Marusenko Y, Shipp J, Hamilton GA, Morgan JLL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J, Herckes P, Anbar AD, Shock E, Hartnett HE (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environ Pollut 174:150PubMedCrossRefGoogle Scholar
  94. Mingyu S, Hong F, Liu C, Wu X, Liu X, Chen L, Gao F, Yang F, Li Z (2007a) Effects of nano-anatase TiO2 on absorption, distribution of light and photoreduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 118:120PubMedCrossRefGoogle Scholar
  95. Mingyu S, Wu X, Liu C, Qu C, Liu X, Chen L, Huang H, Hong F (2007b) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119:183PubMedCrossRefGoogle Scholar
  96. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J Roy Soc Interf 9:3514CrossRefGoogle Scholar
  97. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48PubMedCrossRefGoogle Scholar
  98. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance: biological techniques. Academic Press, Elsevier, Cambridge, USA, vol 1, p 159Google Scholar
  99. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519CrossRefGoogle Scholar
  100. Morla S, Ramachandra Rao CSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Bio Phys Sci B 1:328Google Scholar
  101. Nadtochenko VA, Nikandrov VV, Gorenberg AA, Karlova MG, Lukashev EP, Yu A, Semenov Bukharina NS, Kostrov AN, Permenova EP, Sarkisov OM (2008) Nanophotobiocatalysts based on mesoporous titanium dioxide films conjugated with enzymes and photosynthetic reaction centers of bacteria. High Energy Chem 42:591CrossRefGoogle Scholar
  102. Nair PM, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302PubMedCrossRefGoogle Scholar
  103. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154CrossRefGoogle Scholar
  104. Nalwade AR, Neharkar SB (2013) Carbon nanotubes enhance the growth and yield of hybrid Bt cotton Var. ACH-177-2. Int J Adv Sci Tech Res 3:840Google Scholar
  105. Nieder JB, Bittl R, Brecht M (2010) Fluorescence studies into the effect of plasmonic interactions on protein function. Angew Chem Int Edn 49:10217CrossRefGoogle Scholar
  106. Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27:705PubMedCrossRefGoogle Scholar
  107. Olejnik M, Krajnik B, Kowalska D, Twardowska M, Czechowski N, Hofmann E, Mackowski S (2013) Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Appl Phys Lett 102:083703CrossRefGoogle Scholar
  108. Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Giri PK, Goswami DK, Perumal A (eds) Advanced nanomaterials and nanotechnology. Springer, Berlin, Heidelberg, Germany, p 301Google Scholar
  109. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Preister JH, Holden PA, Gardea-Torresday J (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soy bean plants. Plant Physiol Biochem 80:128PubMedCrossRefGoogle Scholar
  110. Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374PubMedCrossRefGoogle Scholar
  111. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122PubMedCrossRefGoogle Scholar
  112. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905CrossRefGoogle Scholar
  113. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323PubMedCrossRefGoogle Scholar
  114. Racuciu M, Creanga D (2009) Biocompatible magnetic fluid nanoparticles internalized in vegetal tissues. Roman J Phys 54:115Google Scholar
  115. Racuciu M, Miclaus S, Creanga D (2009) The response of plant tissues to magnetic fluid and electromagnetic exposure. Rom J Biophys 19:73Google Scholar
  116. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48Google Scholar
  117. Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415Google Scholar
  118. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467Google Scholar
  119. Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 1:517Google Scholar
  120. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresday JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278PubMedCrossRefGoogle Scholar
  121. Rico CM, Lee SC, Rubenecia R, Mukerjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669Google Scholar
  122. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res. J Biotechnol 3:190Google Scholar
  123. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61Google Scholar
  124. Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Uni Timisoara Ser Biol XVI:73Google Scholar
  125. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143CrossRefGoogle Scholar
  126. Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225PubMedCrossRefGoogle Scholar
  127. Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112Google Scholar
  128. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Biol Sci 21:13CrossRefGoogle Scholar
  129. Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139PubMedCrossRefGoogle Scholar
  130. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429PubMedCrossRefGoogle Scholar
  131. Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132CrossRefGoogle Scholar
  132. Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147PubMedCrossRefGoogle Scholar
  133. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60PubMedCrossRefGoogle Scholar
  134. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473PubMedCrossRefGoogle Scholar
  135. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr Nanosci 8:902CrossRefGoogle Scholar
  136. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57PubMedCrossRefGoogle Scholar
  137. Tiwari DK, Dasgupta-Schubert N, Villaseñor LM, Tripathi D, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Stud 7:87Google Scholar
  138. Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM, Villegas J, Carreto-Montoya L, Borjas-García SE (2014) Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577CrossRefGoogle Scholar
  139. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295PubMedCrossRefGoogle Scholar
  140. Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609CrossRefGoogle Scholar
  141. Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176PubMedCrossRefGoogle Scholar
  142. Ursache-Oprisan M, Focanici E, Creanga D, Caltun O (2011) Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol 10:7092Google Scholar
  143. Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328PubMedCrossRefGoogle Scholar
  144. Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:1Google Scholar
  145. Wang A, Zheng Y, Peng F (2014) Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. J Spectrosc (169245). doi: 10.1155/2014/169245
  146. Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126Google Scholar
  147. Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing Forest Univ (Natl Sci Ed) 2:59Google Scholar
  148. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122PubMedCrossRefGoogle Scholar
  149. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179PubMedCrossRefGoogle Scholar
  150. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77PubMedCrossRefGoogle Scholar
  151. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7:1CrossRefGoogle Scholar
  152. Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3:80Google Scholar
  153. Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Kellerce AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci: Processes Impacts 15:260Google Scholar
  154. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752PubMedCrossRefGoogle Scholar
  155. Zhao S, Wang Q, Zhao Y, Rui Q, Wang D (2015) Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 39:145PubMedCrossRefGoogle Scholar
  156. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83PubMedCrossRefGoogle Scholar
  157. Zheng L, Su M, Liu C, Chen L, Huang H, Wu X, Liu X, Yang F, Gao F, Hong F (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Bio-Nano Electronics Research CentreToyo UniversityKawagoeJapan

Personalised recommendations