Effects of Nanoparticles on Plant Growth and Development

  • Remya NairEmail author


Nanomaterials provide great opportunities in the field of agriculture because of their unique physicochemical properties. The interaction of nanoparticles with plants results in several physiological, morphological, and genotoxic changes, and their understanding is important for the effective use of nanotechnology in agriculture. Researchers suggested both positive and negative responses of nanoparticles on plant growth and development depending upon the properties of nanomaterials, mode of application as well as plant species. Studies on the uptake, translocation and biotransformation, and risks of application of nanomaterials on agriculturally important crops are recent research focus for understanding the physiological, biochemical, and molecular mechanisms of plants in relation to nanoparticles.


Nanoparticles Plants Uptake Translocation Growth Phytotoxicity 


  1. Adhikari T, Kundu S, Rao SA (2013) Impact of SiO2 and Mo nanoparticles on seed germination of rice (Oryza Sativa L.). Intl J Agri Food Sci Technol 4:809–816Google Scholar
  2. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310CrossRefGoogle Scholar
  3. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857CrossRefPubMedGoogle Scholar
  4. Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124CrossRefGoogle Scholar
  5. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Günther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718–8723CrossRefPubMedGoogle Scholar
  6. Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed. Intl J Biosci Biochem Bioinform 1:282–285Google Scholar
  7. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee H, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931Google Scholar
  8. Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26–33CrossRefGoogle Scholar
  9. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de LA, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45–56CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85CrossRefPubMedGoogle Scholar
  11. Das M, Singh RP, Datir SR, Jain S (2013) Intranuclear drug delivery and effective in vivo cancer therapy via estradiol–PEG-appended multiwalled carbon nanotubes. Mol Pharm 10:3404–3416CrossRefPubMedGoogle Scholar
  12. de la Rosa G, López-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174Google Scholar
  13. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano and microparticles in the plant environment. Environ Sci Technol 47:4734–4742CrossRefPubMedGoogle Scholar
  14. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828CrossRefPubMedGoogle Scholar
  15. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160CrossRefPubMedGoogle Scholar
  16. El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49CrossRefPubMedGoogle Scholar
  17. Espinosa AJF, Oliva SR (2006) The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere 62:1665–1672CrossRefGoogle Scholar
  18. Fabbro C, Ali-Boucetta H, Ros TD, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926CrossRefGoogle Scholar
  19. Feizi H, Rezvani MP, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106CrossRefPubMedGoogle Scholar
  20. Feizi H, Pour SJ, Rad KH (2013) Biological response of muskmelon (Cucumis melo L.) to magnetic field and silver nanoparticles. Annu Rev Res Biol 3:794–804Google Scholar
  21. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652PubMedGoogle Scholar
  22. Giordani T, Fabrizi A, Guidi L, Natali L, Giunti G, Ravasi F, Cavallini A, Pardossi A (2012) Response of tomato plants exposed to treatment with nanoparticles. Environ Qual 8:27–38Google Scholar
  23. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408CrossRefPubMedGoogle Scholar
  24. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de- Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195CrossRefPubMedGoogle Scholar
  25. Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2014) Interaction between silver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory—Greensys, Jeju, Korea, 6–11 Oct 2013Google Scholar
  26. Haghighi M, da Silva TJA (2014) Effect of N-TiO2 on tomato, onion and radish seed germination. J Crop Sci Biotechnol 17(2014):221–227CrossRefGoogle Scholar
  27. Hao Y, Yang X, Shi Y, Song S, Xing J, Marowitch J, Chen J (2013) Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 91:457–466CrossRefGoogle Scholar
  28. Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385CrossRefPubMedGoogle Scholar
  29. Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Bot Hort Agrobo 41:201–207Google Scholar
  30. Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanoparticles to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474CrossRefPubMedGoogle Scholar
  31. Karl-Josef D, Simone H (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589CrossRefGoogle Scholar
  32. Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Aken BV (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644PubMedGoogle Scholar
  33. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135CrossRefPubMedGoogle Scholar
  34. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123CrossRefPubMedGoogle Scholar
  35. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(13):37CrossRefPubMedPubMedCentralGoogle Scholar
  36. Krystofova O, Sochor J, Zitka O, Babula P, Kudrle V, Adam V, Kizek R (2013) Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture. Int J Environ Res Public Health 10:47–71CrossRefGoogle Scholar
  37. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973CrossRefPubMedGoogle Scholar
  38. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carrière M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser 304:012057CrossRefGoogle Scholar
  39. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012a) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208Google Scholar
  40. Larue C, Veronesi G, Flank A-M, Surble S, Herlin-Boime N, Carrière M (2012b) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health Part A 75:722–734Google Scholar
  41. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefPubMedGoogle Scholar
  42. Lee W-M, Kwak J II, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiates and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499CrossRefPubMedGoogle Scholar
  43. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefPubMedGoogle Scholar
  44. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585CrossRefPubMedGoogle Scholar
  45. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132CrossRefPubMedGoogle Scholar
  46. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010CrossRefPubMedGoogle Scholar
  47. Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C, Fang X (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47:7490–7498PubMedGoogle Scholar
  48. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010a) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693Google Scholar
  49. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010b) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320Google Scholar
  50. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778CrossRefGoogle Scholar
  51. Mazumdar H, Ahmed GU (2011) Phytotoxicity effects of silver nanoparticles on Oryza sativa. Int J ChemTech Res 3:1494–1500Google Scholar
  52. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528CrossRefGoogle Scholar
  53. Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230CrossRefPubMedGoogle Scholar
  54. Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2:247–251CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138CrossRefPubMedGoogle Scholar
  56. Mushtaq YK (2011) Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1732–1735CrossRefPubMedGoogle Scholar
  57. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  58. Nair R, Mohamed SM, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220CrossRefPubMedGoogle Scholar
  59. Namasivayam SKR, Chitrakala K (2011) Ecotoxicological effect of Lecanicillium lecanii (Ascomycota: Hypocreales) based silver nanoparticles on growth parameters of economically important plants. J Biopesticides 4:97–101Google Scholar
  60. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRefPubMedGoogle Scholar
  61. Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232CrossRefPubMedGoogle Scholar
  62. Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticles toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32:902–907CrossRefPubMedGoogle Scholar
  63. Pirvulescu A, Sala F (2012) Nitrogen content in lettuce under the influence of magnetic nanofluids. J Hort Biotechnol 16:63–66Google Scholar
  64. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332CrossRefPubMedGoogle Scholar
  65. Prasad TNVK, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  66. Racuciu M, Creanga DE (2009) Biocompatible magnetic fluid nanoparticles internalized in vegetal tissue. Rom J Phys 54:115–124Google Scholar
  67. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ruffini CM, Roberto C (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  69. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360CrossRefPubMedGoogle Scholar
  70. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197Google Scholar
  71. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2011a) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499Google Scholar
  72. Serag MF, Kaji N, Venturelli E, Okamoto Y, Terasaka K, Tokeshi M, Mizukami H, Braeckmans K, Bianco A, Baba Y (2011b) Functional platform for controlled subcellular distribution of carbon nanotubes. ACS Nano 5:9264–9270Google Scholar
  73. Serag MF, Kaji N, Tokeshi M, Baba (2012a) Introducing carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Adv 2:398–400Google Scholar
  74. Serag MF, Kaji N, Tokeshi M, Biancoe A, Baba Y (2012b) The plant cell uses carbon nanotubes to build tracheary elements. Integr Biol 4:127–131Google Scholar
  75. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598CrossRefPubMedGoogle Scholar
  76. Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609CrossRefPubMedGoogle Scholar
  77. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saud J Biol Sci 21:13–17CrossRefGoogle Scholar
  78. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254PubMedGoogle Scholar
  79. Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479CrossRefPubMedGoogle Scholar
  80. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908CrossRefGoogle Scholar
  81. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64CrossRefPubMedGoogle Scholar
  82. Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758CrossRefPubMedGoogle Scholar
  83. Tarafdar JC, Xiang Y, Wang W-N, Dong Q, Biswas P (2012) Standardization of size, shape and concentration of nanoparticle for plant application. Appl Biol Res 14:138–144Google Scholar
  84. Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9:e93793CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tiwari DK, Dasgupta-Schubert N, Cendejas LMV, Villegas J, Montoya LC, Garcia SEB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591CrossRefGoogle Scholar
  86. Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Fullerene-enhanced accumulation of p, p′-DDE in agricultural crop species. Environ Sci Technol 46:9315–9323CrossRefGoogle Scholar
  87. Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547CrossRefGoogle Scholar
  88. Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181CrossRefPubMedGoogle Scholar
  89. Ursache-Oprisan M, Focanici E, Creanga D, Caltun O (2011) Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol 10(2011):7092–7098Google Scholar
  90. Vannini C, Domingo G, Onelli E, Mattia FD, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148CrossRefPubMedGoogle Scholar
  91. Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42CrossRefPubMedGoogle Scholar
  92. Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012a) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112CrossRefPubMedGoogle Scholar
  93. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441CrossRefPubMedGoogle Scholar
  94. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013a) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449Google Scholar
  95. Wang Q, Ebbs SD, Chen Y, Ma X (2013b) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759Google Scholar
  96. Xingmao M, Jane G-L, Yang D, Andrei K (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061CrossRefGoogle Scholar
  97. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefPubMedGoogle Scholar
  98. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367CrossRefPubMedGoogle Scholar
  99. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7:e47674CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) ZnO nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137CrossRefPubMedGoogle Scholar
  101. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agri Food Chem 61:11945–11951CrossRefGoogle Scholar
  103. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717CrossRefPubMedGoogle Scholar
  104. Zhu Z-J, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing B, Vachet RW (2012) Effects of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nano Research FacilityWashington University in St. LouisSt. LouisUSA

Personalised recommendations