Advertisement

Methods of Using Nanoparticles

  • M. Sheikh Mohamed
  • D. Sakthi KumarEmail author
Chapter

Abstract

Though moderate, the advances of nanotechnology in the field of plant sciences have been steadily making its mark as a technology to reckon with. Unlike in electronics, energy harvesting, or medical sciences where nanotechnology has initiated a revolution of events, the effects on plants and related disciplines have been limited, to say the least. Though reasons can be stacked up in this regard, the major concern remains as to how this technology should be employed. The ambassadors of this technology, the various nanomaterials currently available, pose a peculiar problem of the modes in which they should be allowed to interact with the plant species and their microenvironment. Problems associated with the toxicity, bioavailability, and consequential effects depend primarily on the methods employed for the administration of these nanomaterials. The mode of nanomaterial administration decides to a large extent how and where they will interact with the plants and their subsequent fate. This chapter deals with the diverse methods adopted by researchers over the years in their pursuit to develop efficient and reliable ways in which the nanomaterials can be delivered to the plant system to assess their beneficial or detrimental effects thereof.

Keywords

Nanotechnology Nanomaterial Plants Toxicity Bioavailability 

References

  1. Al-Salim N, Barraclough E, Burgess E, Clothier B, Deurer M, Green S, Malone L, Weir G (2011) Quantum dot transport in soil, plants, and insects. Sci Total Environ 409:3237CrossRefPubMedGoogle Scholar
  2. Anderson ES, Grilloa PR, Nathalie FS, Melloa Rosab AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207CrossRefGoogle Scholar
  3. Anusuya S, Sathiyabama M (2015) Foliar application of β-D-Glucan nanoparticles to control rhizome rot disease of turmeric. Int J Biol Macromol 72:1205CrossRefPubMedGoogle Scholar
  4. Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253CrossRefPubMedGoogle Scholar
  5. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Gunther L, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718CrossRefPubMedGoogle Scholar
  6. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7:e34783CrossRefPubMedPubMedCentralGoogle Scholar
  7. Campbell NA (1990) Biology, 2nd edn. The Benjamin/Cummings Publishing Company, Redwood CityGoogle Scholar
  8. Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144CrossRefPubMedGoogle Scholar
  9. Cornelis J-T, Kruyts N, Dufey JE, Delvaux B, Opfergelt S (2012) Understanding root uptake of nutrients, toxic and polluting elements in hydroponic culture. In: Asao T (ed) Hydroponics—a standard methodology for plant biological researches. ISBN 978-953-51-0386-8, InTech, Rijeka, Croatia, p 153Google Scholar
  10. Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277CrossRefPubMedGoogle Scholar
  11. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez- de-Luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9: 45Google Scholar
  12. Cotae V, Creanga I (2005) LHC II system sensitivity to magnetic fluids. J Magn Magn Mater 289:459CrossRefGoogle Scholar
  13. Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241CrossRefGoogle Scholar
  14. Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environ Sci Technol 49:3007CrossRefPubMedGoogle Scholar
  15. Das S, Wolfson BP, Tetard L, Tharjur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci NANO 2:203CrossRefGoogle Scholar
  16. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151CrossRefPubMedGoogle Scholar
  17. Ernst R, Arditti J, Healey PL (1971) Biological effects of surfactants. I. Influence on the growth of orchid seedlings. New Phytol 70:457CrossRefGoogle Scholar
  18. Falco WF, Botero ER, Falcao EA, Santiago EF, Bagnato VS, Caires ARL (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J of Photochem Photobiol A 225:65CrossRefGoogle Scholar
  19. Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res Int 22:11CrossRefGoogle Scholar
  20. Fernandez V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36CrossRefGoogle Scholar
  21. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahnoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645PubMedGoogle Scholar
  22. Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952CrossRefPubMedGoogle Scholar
  23. Ghosh M, Banyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 81:1253CrossRefPubMedGoogle Scholar
  24. Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado, E. Corredor MJ, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D and Perez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101: 187Google Scholar
  25. Gui X, He X, Ma Y, Zhang P, Li Y, Ding Y, Yang K, Li H, Rui Y, Chai Z, Zhao Y, Zhang Z (2015) Quantifying the distribution of ceria nanoparticles in cucumber roots: the influence of labeling. RSC Adv 5:4554CrossRefGoogle Scholar
  26. Hassana FAS, Ali EF, El-Deeb B (2014) Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Sci Hort 179:340CrossRefGoogle Scholar
  27. Hernandez-Viezcas JA, Castillo-Michel M, Servin AD, Peralta-Videa JR, Gardea-Torresday JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346CrossRefPubMedGoogle Scholar
  28. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresday JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci: Process Impacts 17:177Google Scholar
  29. Hong J, Peralta-Videa RJ, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376CrossRefPubMedGoogle Scholar
  30. Joseph T, Morrison M (2006) Nanotechnology in agriculture and food www.nanoforum.org
  31. Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467CrossRefPubMedGoogle Scholar
  32. Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Won MK, Manoharan K, Kim W (2011) 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168CrossRefPubMedGoogle Scholar
  33. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of NP-plant interactions. Proc Natl Acad Sci USA 108:1028CrossRefPubMedGoogle Scholar
  34. Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477CrossRefPubMedGoogle Scholar
  35. Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H + -ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113CrossRefPubMedGoogle Scholar
  36. Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222CrossRefPubMedGoogle Scholar
  37. Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL, Alvarez PJJ, Braam J (2015) Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol 49:626CrossRefPubMedGoogle Scholar
  38. Kordan HA (1992) Seed viability and germination: a multi-purpose experimental system. J Biol Educ 26:247CrossRefGoogle Scholar
  39. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst plant growth metabolism. Process Biochem 47:651CrossRefGoogle Scholar
  40. Kumar M, Khan SS, Parakshi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613CrossRefGoogle Scholar
  41. Kumar M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243CrossRefGoogle Scholar
  42. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461–462:462CrossRefPubMedGoogle Scholar
  43. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607CrossRefGoogle Scholar
  44. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98CrossRefPubMedGoogle Scholar
  45. Lee W-M, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491CrossRefPubMedGoogle Scholar
  46. Lopez-Moreno ML, Rosa GD, Ahernandez-Viezcas J, Michel HC, Botez CE, Videa RP, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lopez-Moreno ML, Rosa Gdl, Hernandez-Viezcas JA, Perlta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243CrossRefPubMedGoogle Scholar
  49. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small 5:1128CrossRefPubMedGoogle Scholar
  50. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686PubMedGoogle Scholar
  51. Liu Y, Laks P, Heiden P (2002a) Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J Appl Polymer Sci 86:596Google Scholar
  52. Liu Y, Laks P, Heiden P (2002b) Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J Appl Polymer Sci 86: 608Google Scholar
  53. Liu Y, Laks P, Heiden P (2002c) Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J Appl Polymer Sci 86: 615Google Scholar
  54. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007CrossRefPubMedGoogle Scholar
  55. Lv J, Zhnag S, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci: Nano 2:68Google Scholar
  56. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273CrossRefPubMedGoogle Scholar
  57. Majumdar S, Peralta-Videa J, Bandyopadhay S, Castillo-Michel H, Hernandez-Viezcas JA, Sahi SV (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279CrossRefPubMedGoogle Scholar
  58. Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotox Environ Safe 108:335CrossRefGoogle Scholar
  59. Moon YS, Park ES, Kim TO, Lee HS, Lee SE (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Pharmacol 38:922CrossRefPubMedGoogle Scholar
  60. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6: 132Google Scholar
  61. Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotox Environ Safe 113: 302Google Scholar
  62. Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427CrossRefPubMedGoogle Scholar
  63. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 17:372CrossRefPubMedGoogle Scholar
  64. Nordmann J, Buczka S, Voss B, Hasse M, Mummenhoff K (2015) In vivo analysis of the size- and time-dependent uptake of NaYF4:Yb, Er upconversion nanocrystals by pumpkin seedlings. J Mater Chem B 3:144CrossRefGoogle Scholar
  65. Park H-J, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295CrossRefGoogle Scholar
  66. Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pavel A, Trifan M, Bara II, Creanga DE, Cotae C (1999) Accumulation dynamics and some cytogenetical tests at Chelidonium majus and Papaver somniferum callus under the magnetic liquid effect. J Magn Magn Mater 201:443CrossRefGoogle Scholar
  68. Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128CrossRefPubMedGoogle Scholar
  69. Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1CrossRefGoogle Scholar
  70. Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62:8777CrossRefPubMedGoogle Scholar
  71. Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669CrossRefPubMedGoogle Scholar
  72. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-J, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278CrossRefPubMedGoogle Scholar
  73. Schwabe F, Schulin R, Limbach LK, Stark W, Burge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512CrossRefPubMedGoogle Scholar
  74. Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, Quadtc AV, Nowack B (2015) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7:466CrossRefPubMedGoogle Scholar
  75. Solgi M, Kafi M, Taghavi TS, Naderi R (2009) Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol Technol 53:155CrossRefGoogle Scholar
  76. Speranza A, Leopold K, Maier M, Taddei AR, Scoccianti V (2010) Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II). Environ Pollut 158:873CrossRefPubMedGoogle Scholar
  77. Spurrier EC, Jackobs JA (1955) Effects of an anionic sodium sulfonate type surfactant upon plant growth. Agron J 47:462CrossRefGoogle Scholar
  78. Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy N, Kumar A, Sharma RK, Singh SK, Philip D, Das M (2014) Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv 4:58495CrossRefGoogle Scholar
  79. Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473CrossRefPubMedGoogle Scholar
  80. Su Y, Qi L, Mu X, Wang M (2015) A fluorescent probe for sensing ferric ions in bean sprouts based on L-histidine-stabilized gold nanoclusters. Anal Methods 7:684CrossRefGoogle Scholar
  81. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105CrossRefGoogle Scholar
  82. Temple RE, Hilton HW (1963) The effect of surfactants on the water solubility of herbicides and the foliar phytotoxicity of surfactants. Weeds 11:297CrossRefGoogle Scholar
  83. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotox Environ Safe 104: 302Google Scholar
  84. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295CrossRefPubMedGoogle Scholar
  85. Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC (2012) Fullerene-enhanced accumulation of p, p′-DDE in agricultural crop species. Environ Sci Technol 46:9315CrossRefGoogle Scholar
  86. Torre-Roche RDL, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC (2013) Impact of Ag nanoparticle exposure on p, p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environ Sci Technol 47:718CrossRefGoogle Scholar
  87. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric pollution. Environ Sci Technol 44:1036CrossRefPubMedGoogle Scholar
  88. Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4: 1105Google Scholar
  89. Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155CrossRefGoogle Scholar
  90. Yeo M-K, Nam D-H (2013) Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: a comparison of TiO2 nanoparticles and nanotubes. Environ Pollut 178:166CrossRefPubMedGoogle Scholar
  91. Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zhao L, Peratla-Videa JR, Peng B, Bandyopadhyay S, Corral-Diaz B, Osuna P, Montes MO, Keller AA, Gardea-Toreesday JL (2014a) Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil. J Environ Sci 26:382CrossRefGoogle Scholar
  93. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Guardea M, Gardea-Torresdey JL (2014b) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752CrossRefPubMedGoogle Scholar
  94. Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, Duarte-Guardea M, Peralta-Videa JR, Gardea-Torresday JL (2015a) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921CrossRefPubMedGoogle Scholar
  95. Zhao S, Wang Q, Zhao Y, Ruia Q, Wang D (2015b) Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ Toxicol Pharmacol 39:145CrossRefPubMedGoogle Scholar
  96. Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Uptake and accumulation of CuO nanoparticles and CdS/ZnS quantum dot nanoparticles by Schoenoplectus tabernaemontani in hydroponic mesocosms. Ecol Eng 70:114CrossRefGoogle Scholar
  97. Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK (2015) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211CrossRefPubMedGoogle Scholar
  98. Zhu Z-J, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing B, Vachet RW (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Bio-Nano Electronics Research CentreToyo UniversityKawagoe, SaitamaJapan

Personalised recommendations