Advertisement

Biophysical Methods of Detection and Quantification of Uptake, Translocation, and Accumulation of Nanoparticles

  • Illya A. Medina-Velo
  • Nubia Zuverza-Mena
  • Wenjuan Tan
  • Jose A. Hernandez-Viezcas
  • Jose R. Peralta-Videa
  • Jorge L. Gardea-TorresdeyEmail author
Chapter

Abstract

Manufactured nanomaterials (MNMs) are more frequently found in consumer products as well as in industrial and agricultural applications. The high volume of production, use, and disposal of MNM-containing wastes increase the probability of release of these products to the environment. An ever-increasing number of articles have shown that MNMs impact plants and other organisms in different ways. In this chapter, we discuss the biophysical methods currently used to measure the uptake, translocation, accumulation, and speciation of MNMs within plants. We included methods used to analyze plants exposed to carbon-based and metal-based MNMs. Advantages and disadvantages of each analytical technique are discussed.

Keywords

Nanoparticles Plants Absorption Detection Quantification Microscopy Spectroscopy 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI-0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review, and no official endorsement should be inferred. This work was also supported by Grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). Authors also acknowledge the USDA grant number 2011-38422-30835 and the NSF Grants # CHE-0840525 and DBI 1429708. Partial funding was provided by the NSF ERC on Nanotechnology-Enable Water Treatment (EEC-1449500). J. L. Gardea-Torresdey acknowledges the Dudley family for the Endowed Research Professorship, the Academy of Applied Science/US Army Research Office, Research and Engineering Apprenticeship program (REAP) at UTEP, grant # W11NF-10-2-0076, sub-grant 13-7, and STARs programs of the University of Texas System. N. Zuverza-Mena and I.A. Medina-Velo thank the support of Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACyT).

References

  1. Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agr Ecosyst Environ 218:163–177. doi: 10.1016/j.agee.2015.11.022 CrossRefGoogle Scholar
  2. Abraham PM, Barnikol S, Baumann T, Kuehn M, Ivleva NP, Schaumann GE (2013) Sorption of silver nanoparticles to environmental and model surfaces. Environ Sci Technol 47(10):5083–5091. doi: 10.1021/es303941e PubMedCrossRefGoogle Scholar
  3. Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16(6):R65–R92. doi: 10.1088/0957-0233/16/6/R01 CrossRefGoogle Scholar
  4. Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch Eur J Physiol 456(1):211–225. doi: 10.1007/s00424-007-0406-0 CrossRefGoogle Scholar
  5. Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 42:393–414. doi: 10.1146/annurev-biophys-083012-130324 PubMedCrossRefGoogle Scholar
  6. Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705. doi: 10.1016/j.talanta.2014.08.050 PubMedCrossRefGoogle Scholar
  7. Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 166:76–85. doi: 10.1016/j.foodchem.2014.05.139 PubMedCrossRefGoogle Scholar
  8. Bandyopadhyay S, Peralta-Videa JR, Plascencia-Villa G, José-Yacamán M, Gardea-Torresdey JL (2012) Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques. J Hazard Mater 241–242:379–386. doi: 10.1016/j.jhazmat.2012.09.056
  9. Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 3030(3):118–125. doi: 10.1089/ees.2012.0325 CrossRefGoogle Scholar
  10. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69. doi: 10.1016/j.scitotenv.2015.02.014 PubMedCrossRefGoogle Scholar
  11. Benıtez JJ, Matas AJ, Heredia A (2004) Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques. J Struct Biol 147(2):179–184. doi: 10.1016/j.jsb.2004.03.006 PubMedCrossRefGoogle Scholar
  12. Bertsch PM, Hunter DB (2001) Applications of synchrotron-based X-ray microprobes. Chem Rev 101(6):1809–1842. doi: 10.1021/cr990070s PubMedCrossRefGoogle Scholar
  13. Boss CB, Fredeen KJ (2004) Concepts, instrumentation and techniques in inductively coupled plasma optical emission spectrometry. Perkin ElmerGoogle Scholar
  14. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931. doi: 10.1897/08-117.1
  15. Cohen SR, Bitler A (2008) Use of AFM in bio-related systems. Curr Opin Colloid Interface Sci 13(5):316–325. doi: 10.1016/j.cocis.2008.02.002 CrossRefGoogle Scholar
  16. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8(2):e57189. doi: 10.1371/journal.pone.0057189 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cui D, Zhang P, Ma Y, He X, Li Y, Zhang J, Zhao Y, Zhang Z (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1(5):459–465. doi: 10.1039/c4en00025k CrossRefGoogle Scholar
  18. Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environ Sci Technol 49(5):3007–3014. doi: 10.1021/es506179e PubMedCrossRefGoogle Scholar
  19. De La Rosa G, López-Moreno ML, Hernandez-Viezcas JA, Montes MO, Peralta-Videa J, Gardea-Torresdey J (2011) Toxicity and biotransformation of ZnO nanoparticles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida. Int J Nanotechnol 8(6):492–506. doi: 10.1504/IJNT.2011.04019 CrossRefGoogle Scholar
  20. Degueldre C, Favarger PY (2003) Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloid Surf A 217(1–3):137–142. doi: 10.1016/S0927-7757(02)00568-X CrossRefGoogle Scholar
  21. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47(9):4734–4742. doi: 10.1021/es304736y PubMedCrossRefGoogle Scholar
  22. Donner E, Punshon T, Guerinot ML, Lombi E (2012) Functional characterisation of metal (loid) processes in plants through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem 402(10):3287–3298. doi: 10.1007/s00216-011-5624-9 PubMedCrossRefGoogle Scholar
  23. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828. doi: 10.1039/C0EM00611D PubMedCrossRefGoogle Scholar
  24. Dubascoux S, Le Hecho I, Hassellov M, Von Der Kammer F, Potin Gautier M, Lespes G (2010) Field-flow fractionation and inductively coupled plasma mass spectrometer coupling: history, development and applications. J Anal Atom Spectrom 25(5):613–623. doi: 10.1039/B927500B CrossRefGoogle Scholar
  25. Dudkiewicz A, Tiede K, Loeschner K, Jensen LHS, Jensen E, Wierzbicki R, Boxall ABA, Molhave K (2011) Characterization of nanomaterials in food by electron microscopy. Trends Anal Chem 30(1):28–43. doi: 10.1016/j.trac.2010.10.007 CrossRefGoogle Scholar
  26. Dudkiewicz A, Boxall ABA, Chaudhry Q, Mølhave K, Tiede K, Hofmann P, Linsinger TPJ (2015) Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chem 176:472–479. doi: 10.1016/j.foodchem.2014.12.071 PubMedCrossRefGoogle Scholar
  27. Elzey SR (2010) Applications and physicochemical characterization of nanomaterials in environmental, health, and safety studies. Ph.D. (Doctor of Philosophy) Thesis, University of Iowa, USA. http://ir.uiowa.edu/etd/494
  28. Ensikat HJ, Ditsche-Kuru P, Barthlott W (2010) Scanning electron microscopy of plant surfaces: simple but sophisticated methods for preparation and examination. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education, FORMATEX, pp 248–255Google Scholar
  29. Fahrni CJ (2009) Fluorescent probes for two-photon excitation microscopy. In: Reviews in fluorescence 2007, Springer, pp 249–269. doi: 10.1007/978-0-387-88722-7_11
  30. Fendorf SE, Sparks DL, Lamble GM, Kelley MJ (1994) Applications of X-ray absorption fine structure spectroscopy to soils. Soil Sci Am J 58(6):1583–1595CrossRefGoogle Scholar
  31. Gaczynska M, Osmulski PA (2008) AFM of biological complexes: what can we learn? Curr Opin Colloid Interface Sci 13(5):351–367. doi: 10.1016/j.cocis.2008.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401. doi: 10.1021/nl015673+ CrossRefGoogle Scholar
  33. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. doi: 10.1021/la020835i CrossRefGoogle Scholar
  34. Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48(5):2526–2540. doi: 10.1021/es4050665 PubMedCrossRefGoogle Scholar
  35. Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1(1):3–5. doi: 10.1038/nnano.2006.70 PubMedCrossRefGoogle Scholar
  36. Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619. doi: 10.1016/j.chemosphere.2014.07.049 PubMedCrossRefGoogle Scholar
  37. Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7):2562–2569. doi: 10.1021/es103300g PubMedCrossRefGoogle Scholar
  38. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170(1–3):346–352. doi: 10.1016/j.cej.2010.12.021 PubMedCrossRefGoogle Scholar
  39. Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7(2):1415–1423. doi: 10.1021/nn305196q PubMedCrossRefGoogle Scholar
  40. Hischemöller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5(3):278–284. doi: 10.1166/jbn.2009.1032 PubMedCrossRefGoogle Scholar
  41. Inoué S (2010) Foundations of confocal scanned imaging in light microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, NY, USA, pp 1–19Google Scholar
  42. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781. doi: 10.1021/es103031a PubMedCrossRefGoogle Scholar
  43. Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119. doi: 10.1016/j.tox.2009.08.016 PubMedCrossRefGoogle Scholar
  44. Karydas AG, Sokaras D, Zarkadas C, Grlj N, Pelicon P, Zitnik M, Schutz R, Malzer W, Kanngie (2007) 3D Micro PIXE—a new technique for depth-resolved elemental analysis. J Anal At Spectrom 22(10):1260–1265. doi: 10.1039/b700851c
  45. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108(3):1028–1033. doi: 10.1002/smll.201201225 PubMedCrossRefGoogle Scholar
  46. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123. doi: 10.1002/smll.201201225 PubMedCrossRefGoogle Scholar
  47. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851. doi: 10.1897/08-090.1 PubMedCrossRefGoogle Scholar
  48. Klapetek P, Valtr M, Nečas D, Salyk O, Dzik P (2011) Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res Lett 6(1):1–9. doi: 10.1186/1556-276X-6-514 CrossRefGoogle Scholar
  49. Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228. doi: 10.1016/j.envpol.2012.11.026 PubMedCrossRefGoogle Scholar
  50. Kokina I, Gerbreders V, Sledevskis E, Bulanovs A (2013) Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J Biotechnol 165:127–132PubMedCrossRefGoogle Scholar
  51. Krautbauer R, Rief M, Gaub HE (2003) Unzipping DNA oligomers. Nano Lett 3(4):493–496. doi: 10.1021/nl034049p CrossRefGoogle Scholar
  52. Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621. doi: 10.1016/j.jhazmat.2011.03.095 PubMedCrossRefGoogle Scholar
  53. Laborda F, Jimenez-Lamana J, Bolea E, Castillo JR (2011) Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 26(7):1362–1371. doi: 10.1039/C0JA00098A CrossRefGoogle Scholar
  54. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619. doi: 10.1016/j.carbon.2014.09.095 CrossRefGoogle Scholar
  55. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank A, Fayard B, Chaillou S, Carriere M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys: Conf Ser 304:012057. doi: 10.1088/1742-6596/304/1/012057 Google Scholar
  56. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M (2012a) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp): influence of diameter and crystal phase. Sci Total Environ 431:197–208. doi: 10.1016/j.scitotenv.2012.04.073 PubMedCrossRefGoogle Scholar
  57. Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012b) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163. doi: 10.1016/j.jhazmat.2012.05.033 PubMedCrossRefGoogle Scholar
  58. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014a) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264(98–106):106. doi: 10.1016/j.jhazmat.2013.10.053 Google Scholar
  59. Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Ouerdane L, Legros S, Sarret G (2014b) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26. doi: 10.1016/j.jhazmat.2014.03.014 PubMedCrossRefGoogle Scholar
  60. Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670. doi: 10.1016/j.chemosphere.2015.09.028 PubMedCrossRefGoogle Scholar
  61. Lee P-L, Chen B-C, Gollavelli G, Shen S-Y, Yin Y-S, Lei S-L, Jhang C-L, Lee W-R, Ling Y-C (2014) Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells. J Hazard Mater 277:3–12. doi: 10.1016/j.jhazmat.2014.03.046 PubMedCrossRefGoogle Scholar
  62. Lenaghan SC, Zhang M (2012) Real-time observation of the secretion of a nanocomposite adhesive from English ivy (Hedera helix). Plant Sci 183:206–211. doi: 10.1016/j.plantsci.2011.08.013 PubMedCrossRefGoogle Scholar
  63. Li L, Sillanpää M, Tuominen M, Lounatmaa K, Schultz E (2013) Behavior of titanium dioxide nanoparticles in Lemna minor growth test conditions. Ecotoxicol Environ Saf 88:89–94. doi: 10.1016/j.ecoenv.2012.10.024 PubMedCrossRefGoogle Scholar
  64. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132. doi: 10.1002/smll.200801556 PubMedGoogle Scholar
  65. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010. doi: 10.1021/nl803083u PubMedCrossRefGoogle Scholar
  66. Lombi E, Susini J (2009) Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 320(1–2):1–35. doi: 10.1007/s11104-008-9876-x CrossRefGoogle Scholar
  67. Lombi E, Scheckel KG, Kempson IM (2011) In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ Exp Bot 72(1):3–17. doi: 10.1016/j.envexpbot.2010.04.005 CrossRefGoogle Scholar
  68. López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320. doi: 10.1021/es903891g PubMedPubMedCentralCrossRefGoogle Scholar
  69. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693. doi: 10.1021/jf904472e PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lu Q, He ZL, Stoffella PJ (2012) Land application of biosolids in the USA: a review. App Environ Soil Sci 2012. doi: 10.1155/2012/201462
  71. Luykx DM, Peters RJ, van Ruth SM, Bouwmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agri Food Chem 56(18):8231–8247. doi: 10.1021/jf8013926 CrossRefGoogle Scholar
  72. Lv J, Zhang S, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77. doi: 10.1039/c4en00064a CrossRefGoogle Scholar
  73. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi: 10.1016/j.scitotenv.2010.03.031 PubMedCrossRefGoogle Scholar
  74. Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, Xu Z, Zhang L, Ding Y, Zhao Y, Chai Z (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5(4):743–753. doi: 10.3109/17435390.2010.545487 PubMedCrossRefGoogle Scholar
  75. Majumdar S, Peralta-Videa JR, Castillo-Michel H, Hong J, Rico CM, Gardea-Torresdey JL (2012) Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: A review. Anal Chim Acta 755:1–16. doi: 10.1016/j.aca.2012.09.050 PubMedCrossRefGoogle Scholar
  76. Majumdar S, Peralta-Videa JR, Bandyopadhyay S, Castillo-Michel H, Hernandez-Viezcas J-A, Sahi S, Gardea-Torresdey JL (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287. doi: 10.1016/j.jhazmat.2014.06.009 PubMedCrossRefGoogle Scholar
  77. Mbundi L, Gallar-Ayala H, Rizwan Khan MR, Barber JL, Losada S, Busquets R (2014) Chapter two—advances in the analysis of challenging food contaminants: nanoparticles, bisphenols, mycotoxins, and brominated flame retardants. Adv Mol Toxicol 8:42–45Google Scholar
  78. McPherson A, Malkin A, Kuznetsov YG (2000) Atomic force microscopy in the study of macromolecular crystal growth. Annu Rev Biophys Biomol Struct 29(1):361–410PubMedCrossRefGoogle Scholar
  79. Min W, Freudiger CW, Lu S, Xie XS (2011) Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu Rev Phys Chem 62:507. doi: 10.1146/annurev.physchem.012809.103512 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012) Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal Atom Spectrom 27(7):1131–1142. doi: 10.1039/C2JA30021D CrossRefGoogle Scholar
  81. Mokgalaka NS, Gardea-Torresdey JL (2006) Laser ablation inductively coupled plasma mass spectrometry: Principles and applications. Appl Spectrosc Rev 41(2):131–150. doi: 10.1080/05704920500510703 CrossRefGoogle Scholar
  82. Müller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5):261–269. doi: 10.1038/nnano.2008.100 PubMedCrossRefGoogle Scholar
  83. Palomo-Siguero M, Lopez-Heras MI, Camara C, Madrid Y (2015) Accumulation and biotransformation of chitosan-modified selenium nanoparticles in exposed radish (Raphanus sativus). J Anal Atom Spectrom 30:1237–1244. doi: 10.1039/C4JA00407H CrossRefGoogle Scholar
  84. Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces—horses for courses. Micron 39(8):1049–1061. doi: 10.1016/j.micron.2008.05.006 PubMedCrossRefGoogle Scholar
  85. Patty C, Barnett B, Mooney B, Kahn A, Levy S, Liu Y, Pianetta P, Andrews JC (2009) Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass. Environ Sci Technol 43(19):7397–7402. doi: 10.1021/es901076q PubMedPubMedCentralCrossRefGoogle Scholar
  86. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15. doi: 10.1016/j.jhazmat.2010.11.020 PubMedCrossRefGoogle Scholar
  87. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14(9):1–11. doi: 10.1007/s11051-012-1109-9 CrossRefGoogle Scholar
  88. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47(22):13122–13131. doi: 10.1021/es402659t PubMedCrossRefGoogle Scholar
  89. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118. doi: 10.1021/es4033887 PubMedCrossRefGoogle Scholar
  90. Roco MC, Bainbridge WS (2013) The new world of discovery, invention, and innovation: convergence of knowledge, technology, and society. J Nanopart Res 15(9):1–17. doi: 10.1007/s11051-013-1946-1
  91. Roming AD (1986) Electron optical methods. In: Materials characterization asm handbook, 9th edn. ASM International, The Materials Information Society, vol. 10. pp 429–536Google Scholar
  92. Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166. doi: 10.1161/01.RES.0000150593.30324.42 PubMedCrossRefGoogle Scholar
  93. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360. doi: 10.3109/17435390.2011.579631 PubMedCrossRefGoogle Scholar
  94. Salamon AW, Courtney P, Shuttler I (2010) A primer. In: Frequently asked questions, nanotechnology and engineered material, Available via Perkin Elmer http://www.perkinelmer.com/Content/Manuals/GDE_NanotechnologyPrimer.pdf. Accessed 5 Feb 2015
  95. Sarret G, Smits EAHP, Michel HC, Isaure MP, Zhao FJ, Tappero R (2013) Chapter 1—Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. In: Donald LS (ed) Adv Agron 119:1–82. doi: 10.1016/B978-0-12-407247-3.00001-9
  96. Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H-J (2015) Understanding the fate and biological effects of Ag − and TiO2−nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535(1):3–19. doi: 10.1016/j.scitotenv.2014.10.035 PubMedCrossRefGoogle Scholar
  97. Scheckel K, Hamon R, Jassogne L, Rivers M, Lombi E (2007) Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant Soil 290(1–2):51–60. doi: 10.1007/s11104-006-9102-7 CrossRefGoogle Scholar
  98. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46(14):7637–7643. doi: 10.1021/es300955b PubMedCrossRefGoogle Scholar
  99. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598. doi: 10.1021/es403368j PubMedCrossRefGoogle Scholar
  100. Skoog D, Holler F, Nieman T (1998) Principles of instrumental analysis. 5th edn. Harcourt Brace, Orlando, FL, USA, pp 231–235, 262–263Google Scholar
  101. Stutzmann GE, Parker I (2005) Dynamic multiphoton imaging: a live view from cells to systems. Physiology 20(1):15–21. doi: 10.1152/physiol.00028.2004 PubMedCrossRefGoogle Scholar
  102. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33(8):1389–1402. doi: 10.1007/s00299-014-1624-5 PubMedCrossRefGoogle Scholar
  103. Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9(4):e93793. doi: 10.1371/journal.pone.0093793 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Thomas R (2013) Practical guide to ICP-MS: a tutorial for beginners. CRC Press, Boca Raton, FL, USA, pp 1–4Google Scholar
  105. Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821. doi: 10.1080/02652030802007553 CrossRefGoogle Scholar
  106. Trujillo-Reyes J, Peralta-Videa J, Gardea-Torresdey J (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503. doi: 10.1016/j.jhazmat.2013.11.067 PubMedCrossRefGoogle Scholar
  107. Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soil and cowpea (Vigna unguiculata). Environ Sci Technol 47(23):13822–13830. doi: 10.1021/es403466p PubMedCrossRefGoogle Scholar
  108. Whited AM, Park PSH (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838(1):56–68. doi: 10.1016/j.bbamem.2013.04.011 PubMedCrossRefGoogle Scholar
  109. Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43(14):5290–5294. doi: 10.1021/es900065h PubMedCrossRefGoogle Scholar
  110. Wu S, Baskin TI, Gallagher KL (2012) Mechanical fixation techniques for processing and orienting delicate samples, such as the root of Arabidopsis thaliana, for light or electron microscopy. Nat Protocols 7(6):1113–1124. doi:http://www.nature.com/nprot/journal/v7/n6/abs/nprot.2012.056.html#supplementary-information. Accessed 5 June 2015
  111. Yan D, Zhao Y, Lu A, Wang S, Xu D, Zhang P (2013) Effects of accompanying anions on cesium retention and translocation via droplets on soybean leaves. J Environ Radioact 126:232–238PubMedCrossRefGoogle Scholar
  112. Yang H, Wang Y, Lai S, An H, Li Y, Chen F (2007) Application of atomic force microscopy as a nanotechnology tool in food science. J Food Sci 72(4):R65–R75. doi: 10.1111/j.1750-3841.2007.00346.x PubMedCrossRefGoogle Scholar
  113. Zhang M, Wu S-C, Zhou W, Xu B (2012a) Imaging and measuring single-molecule interaction between a carbohydrate-binding module and natural plant cell wall cellulose. J Phys Chem B 116(33):9949–9956. doi: 10.1021/jp304686q PubMedCrossRefGoogle Scholar
  114. Zhang P, Ma Y, Zhang Z, He X, Guo Z, Tai R, Ding Y, Zhao Y, Chai Z (2012b) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841. doi: 10.1021/es2027295 PubMedCrossRefGoogle Scholar
  115. Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, Tai R, Zhao Y, Chai Z (2012c) Biotransformation of ceria nanoparticles in cucumber Plants. ACS Nano 6(11):9943–9950. doi: 10.1021/nn303543n PubMedCrossRefGoogle Scholar
  116. Zhang P, Ma Y, Zhang Z, He X, Li Y, Zhang J, Zheng L, Zhao Y (2015) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9(1):1–8. doi: 10.3109/17435390.2013.855829 PubMedCrossRefGoogle Scholar
  117. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012a) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8. doi: 10.1016/j.cej.2012.01.041 CrossRefGoogle Scholar
  118. Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225:131–138. doi: 10.1016/j.jhazmat.2012.05.008 PubMedCrossRefGoogle Scholar
  119. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agri Food Chem 61(49):11945–11951. doi: 10.1021/jf404328e CrossRefGoogle Scholar
  120. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agri Food Chem 62(13):2752–2759. doi: 10.1021/jf405476u CrossRefGoogle Scholar
  121. Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in Situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49(5):2921–2928. doi: 10.1021/es5060226 PubMedCrossRefGoogle Scholar
  122. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717. doi: 10.1039/B805998E PubMedCrossRefGoogle Scholar
  123. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377. doi: 10.1038/nbt899 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Illya A. Medina-Velo
    • 1
    • 4
  • Nubia Zuverza-Mena
    • 3
    • 4
  • Wenjuan Tan
    • 1
    • 4
  • Jose A. Hernandez-Viezcas
    • 1
    • 4
  • Jose R. Peralta-Videa
    • 1
    • 2
    • 4
  • Jorge L. Gardea-Torresdey
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of ChemistryThe University of Texas at El PasoEl PasoUSA
  2. 2.Environmental Science and Engineering Ph.D. ProgramThe University of Texas at El PasoEl PasoUSA
  3. 3.Metallurgical and Materials Engineering DepartmentThe University of Texas at El PasoEl PasoUSA
  4. 4.University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El PasoEl PasoUSA

Personalised recommendations