Advertisement

Physical and Chemical Nature of Nanoparticles

  • Sanmathi Chavalmane SubbenaikEmail author
Chapter

Abstract

Nanoparticles have some specific features, including physical properties, chemical properties, merits, and demerits, which have drawn much attention for their application in nanobiotechnology. This chapter explains the state of the art of different properties of nanoparticles and their potential beneficial roles. In addition, this chapter discusses on the research on nanoparticles essentiality for plants and describes the current knowledge concerning the key nanoparticles with important studies for their future applications.

Keywords

Nanoparticles Physiochemical nature Merits and demerits 

References

  1. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403CrossRefGoogle Scholar
  2. Ayyub P, Palkar V, Chattopadhyay S, Multani M (1995) Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B 51:6135CrossRefGoogle Scholar
  3. Barreto Â, Luis LG, Girão AV, Trindade T, Soares AM, Oliveira M (2015) Behavior of colloidal gold nanoparticles in different ionic strength media. J Nanopart Res 17:1–13CrossRefGoogle Scholar
  4. Bhatia A, Shard P, Chopra D, Mishra T (2011) Chitosan nanoparticles as carrier of immunorestoratory plant extract: synthesis, characterization and immunorestoratory efficacy. Int J Drug Deliv 3:381–385Google Scholar
  5. Bilensoy E, Sarisozen C, Esendağlı G, Doğan AL, Aktaş Y et al (2009) Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharmaceut 371:170–176CrossRefGoogle Scholar
  6. Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408CrossRefPubMedGoogle Scholar
  7. Cadden A (1987) Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci 52:1595–1599CrossRefGoogle Scholar
  8. Campos EVR, de Oliveira JL, Fraceto LF (2014) Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6:373–387CrossRefGoogle Scholar
  9. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefPubMedGoogle Scholar
  10. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefPubMedGoogle Scholar
  11. Cyrén B, Hermansson B (2012) Linear actuator assembly. U.S. Patent Application No. 14/359,669.Google Scholar
  12. Ehrman SH, Friedlander SK, Zachariah MR (1999) Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame. J Mater Res 14:4551–4561CrossRefGoogle Scholar
  13. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Planta 134:151–160CrossRefGoogle Scholar
  14. Ekambaram P, Sathali AAH, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2:80–102Google Scholar
  15. Endo M, Iijima S, Dresselhaus MS (eds) (2013) Carbon Nanotubes. Elsevier, Shinshu University, JapanGoogle Scholar
  16. Fedlheim DL, Foss CA (2001) Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, Boca Raton, FL, USAGoogle Scholar
  17. Fernández‐García M, Rodriguez JA (2011) Metal oxide nanoparticles. Encycl Inorg Bioinorg Chem. Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain and Brookhaven National Laboratory, Upton, NY, USAGoogle Scholar
  18. Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273CrossRefPubMedGoogle Scholar
  19. Gilaki M (2010) Biosynthesis of silver nanoparticles using plant extracts. J Biol Sci 10:465–467CrossRefGoogle Scholar
  20. Greulich C, Kittler S, Epple M, Muhr G, Köller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck’s Arch Surg 394:495–502CrossRefGoogle Scholar
  21. Hayat MA (1974) Principles and Techniques of Scanning Electron Microscopy. Biological Applications,vol 1. Van Nostrand Reinhold Company, New Jersey, USAGoogle Scholar
  22. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharmaceut Res 12:255–264Google Scholar
  23. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  24. Jain D, Daima HK, Kachhwaha S, Kothari S (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest J Nanomater Biostruct 4:557–563Google Scholar
  25. Jiang J, Chen D-R, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603CrossRefGoogle Scholar
  26. Jolivet J-P, Froidefond C, Pottier A, Chanéac C, Cassaignon S et al (2004) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A Semi-Quant Model J Mater Chem 14:3281–3288Google Scholar
  27. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kloepfer J, Mielke R, Wong M, Nealson K, Stucky G, Nadeau J (2003) Quantum dots as strain-and metabolism-specific microbiological labels. Appl Environ Microb 69:4205–4213CrossRefGoogle Scholar
  29. Kole C, Kole P, Randunu KM, Choudhary P, Podila R et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37CrossRefPubMedPubMedCentralGoogle Scholar
  30. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium (Shewanella algae). J Biotechnol 128:648–653CrossRefPubMedGoogle Scholar
  31. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468CrossRefPubMedGoogle Scholar
  32. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  33. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefPubMedGoogle Scholar
  34. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56CrossRefPubMedGoogle Scholar
  35. Lövestam G, Rauscher H, Roebben G, Klüttgen BS, Gibson N et al (2010) Considerations on a definition of Nanomaterial for regulatory purposes. Publications Office of the European UnionGoogle Scholar
  36. Mahl D, Diendorf J, Meyer-Zaika W, Epple M (2011) Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf A Physicochem Eng Asp 377:386–392CrossRefGoogle Scholar
  37. Mainardes RM, Khalil NM, Gremião MPD (2010) Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles. Int J Pharmaceut 395:266–271CrossRefGoogle Scholar
  38. Martínez A, Iglesias I, Lozano R, Teijón J, Blanco M (2011) Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohyd Polym 83:1311–1321CrossRefGoogle Scholar
  39. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356CrossRefPubMedGoogle Scholar
  40. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y et al (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220CrossRefPubMedGoogle Scholar
  41. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluores 21:2057–2068CrossRefGoogle Scholar
  42. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  43. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRefPubMedGoogle Scholar
  44. Orts-Gil G, Natte K, Drescher D, Bresch H, Mantion A et al (2011) Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates. J Nanopart Res 13:1593–1604CrossRefGoogle Scholar
  45. Paques JP, van der Linden E, van Rijn CJ, Sagis LM (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interf Sci 209:163–171CrossRefGoogle Scholar
  46. Picó Y, Blasco C (2012) Nanomaterials in food, which way forward? Analys Risk Nanomater Environ Food Samp 59:305CrossRefGoogle Scholar
  47. Prato M, Kostarelos K, Bianco A (2007) Functionalized carbon nanotubes in drug design and discovery. Accounts Chem Res 41:60–68CrossRefGoogle Scholar
  48. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRefGoogle Scholar
  49. Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594CrossRefPubMedGoogle Scholar
  50. Raliya R, Tarafdar J (2012) Novel approach for silver nanoparticle synthesis using Aspergillus terreus CZR-1: mechanism perspective. J Bionanosci 6:12–16CrossRefGoogle Scholar
  51. Raliya R, Tarafdar J (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  52. Rao C, Biswas K (2009) Characterization of nanomaterials by physical methods. Annu Rev Analyt Chem 2:435–462CrossRefGoogle Scholar
  53. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polymer Sci 36:887–913CrossRefGoogle Scholar
  54. Rico CM et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498Google Scholar
  55. Saraogi GK, Gupta P, Gupta U, Jain N, Agrawal G (2010) Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharmaceut 385:143–149CrossRefGoogle Scholar
  56. Schmid G (ed) (2011) Nanoparticles: From Theory to Application. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  57. Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L et al (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. Sci Total Environ 427:253–262CrossRefPubMedGoogle Scholar
  58. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17CrossRefPubMedGoogle Scholar
  59. Song L, Connolly M, Fernández-Cruz ML, Vijver MG, Fernández M et al (2014) Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 8:383–393CrossRefPubMedGoogle Scholar
  60. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254Google Scholar
  61. Syu Y-y, Hung J-H, Chen J-C, Chuang H-W (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64Google Scholar
  62. Tarafdar A, Raliya R, Wang W-N, Biswas P, Tarafdar J (2013) Green synthesis of TiO2 nanoparticle using Aspergillus tubingensis. Adv Sci Eng Med 5:943–949CrossRefGoogle Scholar
  63. Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: Performance of dye-sensitized solar cells and photo watersplitting. J Phys Chem C 112:4134–4140CrossRefGoogle Scholar
  64. Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181CrossRefPubMedGoogle Scholar
  65. Turos E, Shim J-Y, Wang Y, Greenhalgh K, Reddy GSK et al (2007) Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17:53–56CrossRefPubMedGoogle Scholar
  66. Wang W-N, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1–13Google Scholar
  67. Warren BE (1969) X-ray Diffraction. Courier Dover Publications. Reprint of the Addison- Wesley Publishing Compnay, Inc,. Reading Massachusettes, USA, 1969 ednGoogle Scholar
  68. Wu H-L, Kuo C-H, Huang MH (2010) Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 26:12307–12313CrossRefPubMedGoogle Scholar
  69. Zhang P, Ma Y, Zhang Z, He X, Li Y et al (2013) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9:1–8CrossRefPubMedGoogle Scholar
  70. Zhang Y, Ren L, Wang S, Marathe A, Chaudhuri J, Li G (2011) Functionalization of graphene sheets through fullerene attachment. J Mater Chem 21:5386–5391CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nano Research Facility (NNIN-NSF), School of Engineering and Applied ScienceWashington University in St. LouisSt. LouisUSA

Personalised recommendations