Concerns About Nanoparticle Hazard to Human Health and Environment

  • Mohamed H. LahianiEmail author
  • Mariya V. KhodakovskayaEmail author


The number of nanosized products has increased substantially during the last decade. A significant part of these products was developed for human health and fitness. Other nanoproducts belong to areas of automotive, food and beverage, cross-cutting, home and garden, electronics, computers, and appliances. Each year, concern over the exhaustive fate and behavior of nanoparticles (NPs) is increasing. To date, little is known about the safety of using and introducing NPs into the environment. Researchers have tackled this problem by focusing on the interactions of NPs with plants, animals, and human, by studying their behavior in aquatic, soil, and air systems. With the rapid advance of nanotechnology in different fields, regulation measures of the NPs face many challenges in front of contradictory reports and the complexity of properties of NPs.


Nanoparticles Nanotoxicity Human health Environmental impact of nanoparticles Genotoxicity 


  1. Ahamed M, AlSalhi MS, Siddiqui M (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848PubMedCrossRefGoogle Scholar
  2. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466PubMedPubMedCentralCrossRefGoogle Scholar
  3. Antisari LV, Carbone S, Fabrizi A, Gatti A, Vianello G (2011) Response of soil microbial biomass to CeO2 nanoparticles. EQA-Int J Environ Qual 7:1–16Google Scholar
  4. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94CrossRefGoogle Scholar
  5. Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25:3003–3012PubMedCrossRefGoogle Scholar
  6. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:1–14CrossRefGoogle Scholar
  7. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003CrossRefGoogle Scholar
  8. Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271PubMedCrossRefGoogle Scholar
  9. Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646PubMedCrossRefGoogle Scholar
  10. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317PubMedCrossRefGoogle Scholar
  11. Borm P, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11PubMedPubMedCentralCrossRefGoogle Scholar
  12. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager JJ, Hussain SM, Hofmann MC (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signalling in spermatogonial stem cells. Toxicol Sci 116:577–589PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brookes P (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279CrossRefGoogle Scholar
  14. Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang J (1998) A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32:2887–2899CrossRefGoogle Scholar
  15. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632PubMedCrossRefGoogle Scholar
  16. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018PubMedCrossRefGoogle Scholar
  18. Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9:2735–2746PubMedCrossRefGoogle Scholar
  19. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9:291–310PubMedPubMedCentralGoogle Scholar
  20. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8:e57189PubMedPubMedCentralCrossRefGoogle Scholar
  21. Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, Wiesner MR, Bernhardt ES (2014) Emerging contaminant or an old toxin in disguise? silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–5236PubMedCrossRefGoogle Scholar
  22. Cornelis G (2015) Fate descriptors for engineered nanoparticles: the good, the bad, and the ugly. Environ Sci Nano 2:19–26CrossRefGoogle Scholar
  23. Croteau M, Dybowska AD, Luoma SN, Valsami-Jones E (2011) A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology 5:79–90PubMedCrossRefGoogle Scholar
  24. Daniel SK, Tharmaraj V, Sironmani TA, Pitchumani K (2010) Toxicity and immunological activity of silver nanoparticles. Appl Clay Sci 48:547–551CrossRefGoogle Scholar
  25. DEFRA (2007) Characterising the potential risks posed by engineered nanoparticles. Department for Environment, Food and Rural AffairsGoogle Scholar
  26. Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 43:30–59CrossRefGoogle Scholar
  27. Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286PubMedCrossRefGoogle Scholar
  28. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22PubMedCrossRefGoogle Scholar
  29. dos Santos Silva M, Cocenza DS, Grillo R, de Melo Nathalie, Silva Ferreira, Tonello PS, de Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374CrossRefGoogle Scholar
  30. Fajardo C, Ortíz L, Rodríguez-Membibre M, Nande M, Lobo M, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808PubMedCrossRefGoogle Scholar
  31. Fatisson J, Quevedo IR, Wilkinson KJ, Tufenkji N (2012) Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating. Colloids Surf B 91:198–204CrossRefGoogle Scholar
  32. Florence AT (2005) Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today Technol 2:75–81PubMedCrossRefGoogle Scholar
  33. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 5:703–708CrossRefGoogle Scholar
  34. Freese C, Uboldi C, Gibson MI, Unger RE, Weksler BB, Romero IA, Couraud P, Kirkpatrick CJ (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 9:23PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363PubMedCrossRefGoogle Scholar
  36. Gajjar P, Pettee B, Britt D, Huang W, Johnson W, Anderson A (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, PSEUDOMONAS putida KT2440. J Biol Eng 3:9PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664PubMedCrossRefGoogle Scholar
  38. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222PubMedCrossRefGoogle Scholar
  39. Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300PubMedCrossRefGoogle Scholar
  40. Guix M, Orozco J, García M, Gao W, Sattayasamitsathit S, Merkoçi A, Escarpa A, Wang J (2012) Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6:4445–4451PubMedCrossRefGoogle Scholar
  41. Hamdi H, De La Torre-Roche R, Hawthorne J, White JC (2014) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology 1–9Google Scholar
  42. Hubbs AF, Mercer RR, Benkovic SA, Harkema J, Sriram K, Schwegler-Berry D, Goravanahally MP, Nurkiewicz TR, Castranova V, Sargent LM (2011) Nanotoxicology–a pathologist’s perspective. Toxicol Pathol 39:301–324PubMedCrossRefGoogle Scholar
  43. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  44. Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf 88:9–15PubMedCrossRefGoogle Scholar
  45. Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903PubMedCrossRefGoogle Scholar
  46. Kägi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M (2008) Synthetic TiO 2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239CrossRefGoogle Scholar
  47. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413PubMedCrossRefGoogle Scholar
  49. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 12:1813–1831Google Scholar
  50. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17CrossRefGoogle Scholar
  51. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644PubMedCrossRefGoogle Scholar
  52. Khodakovskaya MV, Kim B, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123PubMedCrossRefGoogle Scholar
  53. Kreyling W, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health Part A 65:1513–1530PubMedCrossRefGoogle Scholar
  54. Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857PubMedCrossRefGoogle Scholar
  55. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol, ID 843687.
  56. López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6:38–56CrossRefGoogle Scholar
  57. Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445:371–376PubMedCrossRefGoogle Scholar
  58. Matsumoto M, Serizawa H, Sunaga M, Kato H, Takahashi M, Hirata-Koizumi M, Ono A, Kamata E, Hirose A (2012) No toxicological effects on acute and repeated oral gavage doses of single-wall or multi-wall carbon nanotube in rats. J Toxicol Sci 37:463–474PubMedCrossRefGoogle Scholar
  59. Maynard AD (2011) Don’t define nanomaterials. Nature 475:31PubMedCrossRefGoogle Scholar
  60. Monopoli MP, Åberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786PubMedCrossRefGoogle Scholar
  61. Mubarak N, Sahu J, Abdullah E, Jayakumar N (2014) Removal of heavy metals from wastewater using carbon nanotubes. Separ Purif Rev 43:311–338CrossRefGoogle Scholar
  62. Murray A, Kisin E, Leonard S, Young S, Kommineni C, Kagan V, Castranova V, Shvedova A (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257:161–171Google Scholar
  63. Murugan E, Vimala G (2011) Effective functionalization of multiwalled carbon nanotube with amphiphilic poly (propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. J Colloid Interface Sci 357:354–365PubMedCrossRefGoogle Scholar
  64. Murugan K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V (2015) Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomed 10:2191Google Scholar
  65. Nelson MA, Domann FE, Bowden GT, Hooser SB, Fernando Q, Carter DE (1993) Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health 9:623–630PubMedGoogle Scholar
  66. Ngwa HA, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG (2011) Manganese nanoparticle activates mitochondrial dependent apoptotic signalling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol 256:227–240PubMedCentralCrossRefGoogle Scholar
  67. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile large mouth bass. Environ Health Perspect 112:1058–1062PubMedPubMedCentralCrossRefGoogle Scholar
  68. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105PubMedCrossRefGoogle Scholar
  69. Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J (2012) Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7:818–824PubMedCrossRefGoogle Scholar
  70. Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health. J Appl Biomed 6:117–129Google Scholar
  71. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196PubMedCrossRefGoogle Scholar
  72. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125:10192–10193PubMedCrossRefGoogle Scholar
  73. Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46:834–843PubMedCrossRefGoogle Scholar
  74. Raffa V, Ciofani G, Nitodas S, Karachalios T, D’Alessandro D, Masini M, Cuschieri A (2008) Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46:1600–1610CrossRefGoogle Scholar
  75. Rawson DM, Zhang T, Kalicharan D, Jongebloed WL (2000) Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration. Aquac Res 31:325–336CrossRefGoogle Scholar
  76. Reijnders L (2012) Human health hazards of persistent inorganic and carbon nanoparticles. J Mater Sci 47:5061–5073CrossRefGoogle Scholar
  77. Rodrigues DF, Jaisi DP, Elimelech M (2012) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633PubMedCrossRefGoogle Scholar
  78. Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF (2009) A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem 28:2142–2149PubMedCrossRefGoogle Scholar
  79. Sahoo S (2013) Would you mind, if we record this? Perceptions on regulation and responsibility among Indian nanoscientists. NanoEthics 7:231–249CrossRefGoogle Scholar
  80. Schirhagl R, Latif U, Podlipna D, Blumenstock H, Dickert FL (2012) Natural and biomimetic materials for the detection of insulin. Anal Chem 84:3908–3913PubMedCrossRefGoogle Scholar
  81. Seo Y, Hwang J, Kim J, Jeong Y, Hwang M, Choi J, Seo Y, Hwang J, Kim J, Jeong Y (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomed 9:4621–4629Google Scholar
  82. Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273PubMedCrossRefGoogle Scholar
  83. Shi Kam NW, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851PubMedCrossRefGoogle Scholar
  84. Shin Y, Kwak JI, An Y (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529PubMedCrossRefGoogle Scholar
  85. Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Cañas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197PubMedCrossRefGoogle Scholar
  86. Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, Chirila MM, Keohavong P, Sycheva LP, Kagan VE, Castranova V (2014) Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol 306:L170–L182PubMedCrossRefGoogle Scholar
  87. Sibille Y, Reynolds HY (1990) Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141:471–501PubMedCrossRefGoogle Scholar
  88. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723Google Scholar
  89. Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535PubMedCrossRefGoogle Scholar
  90. Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11:S13PubMedPubMedCentralCrossRefGoogle Scholar
  91. Soler L, Magdanz V, Fomin VM, Sanchez S, Schmidt OG (2013) Self-propelled micromotors for cleaning polluted water. ACS Nano 7:9611–9620PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sumner SC, Fennell TR, Snyder RW, Taylor GF, Lewin AH (2010) Distribution of carbon-14 labeled C60 ([14C] C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine. J Appl Toxicol 30:354–360PubMedGoogle Scholar
  93. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76PubMedCrossRefGoogle Scholar
  94. Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017PubMedCrossRefGoogle Scholar
  95. Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ Pollut 173:38–46PubMedCrossRefGoogle Scholar
  96. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991PubMedCrossRefGoogle Scholar
  97. Tungittiplakorn W, Lion LW, Cohen C, Kim J (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610PubMedCrossRefGoogle Scholar
  98. Upadhyayula VK, Deng S, Smith GB, Mitchell MC (2009) Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram™. Water Res 43:148–156PubMedCrossRefGoogle Scholar
  99. Van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442PubMedCrossRefGoogle Scholar
  100. Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9:455Google Scholar
  101. Wang J, Liu G, Polsky R, Merkoçi A (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Commun 4:722–726CrossRefGoogle Scholar
  102. Wang L, Nagesha DK, Selvarasah S, Dokmeci MR, Carrier RL (2008) Toxicity of CdSe nanoparticles in Caco-2 cell cultures. J Nanobiotechnol 6:1–15CrossRefGoogle Scholar
  103. Watson SB, Gergely A, Janus ER (2011) Where is agronanotechnolgoy heading in the United States and European Union. Nat Resour Environ 26:8Google Scholar
  104. Williams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S (2014) Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology 9(3):279–289Google Scholar
  105. Xia Y (2014) Editorial: are we entering the nano era? Angew Chemie Int Ed 53:12268–12271Google Scholar
  106. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–328PubMedCrossRefGoogle Scholar
  107. Zhao C, Wang W (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892PubMedCrossRefGoogle Scholar
  108. Zhu B, Xia X, Xia N, Zhang S, Guo X (2014) Modification of fatty acids in membranes of bacteria: Implication for an adaptive mechanism to the toxicity of carbon nanotubes. Environ Sci Technol 48(7):4086–4095Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The University of Arkansas at Little RockLittle RockUSA
  2. 2.Institute of Biology and Soil Science, Far-Eastern Branch of Russian Academy of SciencesVladivostokRussian Federation

Personalised recommendations