Skip to main content

Nanotechnology in Soil-Plant System

  • Chapter
  • First Online:

Abstract

Opportunities for applications of nanotechnology in soil-plant system are fast emerging as an alternative to Green Revolution technologies, which need to be phased out due to their limitations in breaking yield barriers and environmental compliances, and ever escalating shortage of farming inputs, especially P- and K-containing fertilizers and irrigation water. Literature and patent applications on nanotechnology applications in soil-plant system encompass novel materials containing nutrients and stimulators of plants, and pesticides. Compatibility of nanomaterials to farming, food and environment is essential because agricultural production functions in open system, where both energy and matter are freely exchanged in the realm of geosphere–biosphere–atmosphere. Apart from nanomaterials intended for farming, thousands other engineered nanoproducts are entering in soil-plant system, which have been altering the pristine state of soil-plant continuum, and therefore calls for framing of regulations on their use. One of the treasures in soil-plant system could be nanofabricated materials containing plant physiologically suitable nutrient ion(s) in clay minerals receptacles. The areas that need further attention in the success of nanotechnology applications in soil-plant system are founding of impeccable paradigms for concepts that govern farm production system, nanofabricating novel materials so as to improve input use efficiency and environmental compliance, interventions in soil fertility and damaged ecosystems, nutrient and water transport mechanisms in soil-plant system, and biosafety of engineered nanomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Amin Sadek MD, Jayasuriya HP (2007) Nanotechnology prospects in agricultural context: an overview. In: Proceedings of the international agricultural engineering conference, Bangkok, 3–6 December 2007, p. 548

    Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayar R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multiwalled carbon nanotubes assessed by selected plant species in seedling stage. Appl Surf Sci 262:120–124

    Article  CAS  Google Scholar 

  • Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) an ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1–12

    Article  Google Scholar 

  • Bhalla D, Mukhopadhyay SS (2010) Eutrophication: can nanophosphorous control this menace?—a preview. J Crop Weed 6:13–16

    Google Scholar 

  • Boehn AL, Martinon I, Zerrouk R, Rung E, Fessi H (2003) Nano precipitation technique for encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  Google Scholar 

  • Brown GE Jr, Parks GA (2001) Sorption of trace elements on mineral surfaces: modern perspectives from spectroscopic studies, and comments on sorption in the marine environment. Int Geolog Rev 43:963–1073

    Article  Google Scholar 

  • Brown GE Jr, Heinrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Grätzel M, Maciel G, McCarthy MI et al (1998) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99:77–174

    Article  Google Scholar 

  • Checkin F, Bagheri S, Aroj AK, Hamid SBA (2012) Preparation and characterization of Ni (II)/ polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation. J Solid State Electrochem 16(10):3245–3251

    Article  Google Scholar 

  • Cheng C, Muller K, Koziol K, Porter AE (2009) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30:4152–4160

    Article  CAS  PubMed  Google Scholar 

  • Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv Agron 102:267–322

    Article  CAS  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Currall SC, King EB, Lane N, Madera J, Turner S (2006) What drives public acceptance of nanotechnology? Nat Nanotechnol 1:153–155

    Article  CAS  PubMed  Google Scholar 

  • De-Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for hidden hunger of Zn in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Editors (2011) Nature. The long game. Nature 473:419

    Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldback HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water suspended nanoparticles. Physiol Plant 134:151–160

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxic and stimulatory impacts of nanosized titanium dioxide on fennel (Foeniculum vulgare). Chemosphere 91:506–511

    Article  CAS  PubMed  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross linking of pectic polysaccharide rhamnogalactouron II. Plant Physiol 121:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folete A, Masfarand J, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Viciafaba. Environ Pollut 159(10):2515–2522

    Article  Google Scholar 

  • Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2:36–50

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang Y, Folta KM (2011) Polyhydroxy fullerenes: Beneficial effects on growth and lifespan in diverse biological models. PLOS ONE 6(5): Article Is e19976

    Google Scholar 

  • Hall JS (2006) Nanofuture: what’s next for nanotechnology?. Manas, New Delhi, India 333p

    Google Scholar 

  • Ioannis AK, Anastasios IZ (2002) Removal of arsenic from contaminated water sources by sorption onto iron oxide coated polymeric materials. Water Res 36:5141–5155

    Article  Google Scholar 

  • Jia G (2005) Cyto-toxicity of carbon nanomaterials: single walled nanotube, multiwalled nanotube and fullerene. Environ Sci Technol 44:1036–1042

    Google Scholar 

  • Jinghua G (2004) Synchrotron radiation, soft X-ray spectroscopy and nano-materials. J Nanotechnol 1:193–225

    Article  Google Scholar 

  • John AR (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109(3):279–287

    Article  Google Scholar 

  • Kalpana-Sastry R, Rao NH, Cahoon R, Tucker T (2007) Can nanotechnology provide the innovations for a second green revolution in Indian agriculture? In: Proceedings of NSF science & engineering grantees conference, Paris, 3-6 December 2007

    Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR (2013) The potassium paradox: implications for soil fertility, crop production and human health. Renew Agri Food Syst 29:3–27. doi:10.1017/S1742170513000318

    Article  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protec 35:64–70

    Article  CAS  Google Scholar 

  • Kuhn TS (1970) The Structures of Scientific Revolutions. University of Chicago Press, Illinois, USA

    Google Scholar 

  • Kuzma J, VerHage P (2006) Nanotechnology in Agriculture and Food Production: Anticipated Applications. Project on Nanotechnology, Woodrow International Centre for Scholars

    Google Scholar 

  • Leggo PJ (2000) An investigation of plant growth in an organo–zeolitic substrate and its ecological significance. Plant Soil 219:135–146

    Article  CAS  Google Scholar 

  • Lei Z (2007) Effect of nanoanatase TiO2 on the photosynthesis of spinach chloroplasts under different light illuminations. Biol Trace Elem Res 119:68–76

    Article  PubMed  Google Scholar 

  • Li W, He Y, Wu J, Xu J (2012) Extraction and characterization of natural soil nanoparticles from Chinese soils. Eur J Soil Sci 63:754–761. doi:10.1111/j.1365-2389.2012.01480.x

    Article  CAS  Google Scholar 

  • Wz Li, Xie SS, Xian LX (1996) Large scale synthesis of aligned carbon nanotubes. Science 274:1703–1707

    Google Scholar 

  • Li Z (2003) Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Micropor Mesopor Mater 61:181–188

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotixicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing nano-subnano composites of slower controlled release of fertilizers. Sci Agri Sin J 39:1598–1604

    CAS  Google Scholar 

  • Lou JC, Jung MJ, Yang HW, Han JY, Huang WH (2011) Removal of dissolved organic matter from raw water by single walled carbon nanotubes. J Environ Sci Health—Part A Toxic/ Hazardous Substances and Environ Engg 46(12):1357–1365

    Article  CAS  Google Scholar 

  • Lower SK, Hochella MF Jr, Beveridge TL (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-Fe00H. Science 292:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kuang L, He X (2010) Effects of rare earth oxide nanoparticles on root elongation in plants. Chemospehere 78:273–279

    Article  CAS  Google Scholar 

  • Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in Soil Science. Adv Agron 100:123–153

    Article  CAS  Google Scholar 

  • Millan G, Agosto F, Vazquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cien Inv Agr 5(3):293–302

    Google Scholar 

  • Ming DW, Boettinger JL (2001) Zeolites in soil environments. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. reviews in mineralogy and geochemistry, Vol 45. Mineralogical Society of America and Geochemical Society Washington DC, USA, pp 323-345

    Google Scholar 

  • Mingfeng Q, Yufeng L, Tianlai K (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress, biological trace element research. Biol Trace Elem Res 156:323–328

    Article  Google Scholar 

  • Moore MN (2006) Do nanoparticles present eco-toxicological risks for the health of aquatic environment. Environ Int 32:967–976

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2005) Weathering of soil minerals and distribution of elements: Pedochemical aspects. Clay Res 24:183–199

    CAS  Google Scholar 

  • Mukhopadhyay SS (2013) Clay Minerals in Nanotechnology Venture in Agriculture. In: Adhikari T, Kundu S, Subba-Rao A (eds) Nanotechnology in Soil Science and Plant Nutrition. New India, New Delhi, India, pp 175–190

    Google Scholar 

  • Mukhopadhyay SS (2014a) Nanotechnology in agriculture: prospects and constraints. Nanotechno Sci Appl 7: 63–71

    Google Scholar 

  • Mukhopadhyay SS (2014b) Inventor; Indian Council of Agricultural Research (New Delhi) assignee. Nanofabrication process involving clay minerals as receptacles for manufacturing advanced nanomaterials including novel fertilizers. Indian Patent Application# 959/DEL/2014 dt. April 02, 2014. PCT International Patent Pub No WO/2015/150903; International Application No: PCT/IB2015/000433; Publ Date 08.10.2015; International Filing Date: 01.04. 2015

    Google Scholar 

  • Mukhopadhyay SS (2014c) Inventor; Indian Council of Agricultural Research (New Delhi) assignee. Nanofabrication of phosphorus on kaolin mineral receptacles. Indian Patent Application# 989/DEL/2014 dt. April 07, 2014. PCT International Patent Pub No WO/2015/155585; International Application No: PCT/IB2015/000439; Publ Date: 15.10.2015; International Filing Date: 02.04. 2015

    Google Scholar 

  • Mukhopadhyay SS (2014d) Inventor; Indian Council of Agricultural Research (New Delhi) assignee. Beneficiation of phosphate rock for the segregation of phosphorus containing heavy metal free minerals. Indian Patent Application# 1042/DEL/2014 dt April 16, 2014. PCT International Patent Pub No WO/2015/159140; International Application No.: PCT/IB2015/000437; Publ. Date: 22.10.2015.; International Filing Date: 02.04. 2015

    Google Scholar 

  • Mukhopadhyay SS, Brar MS (2006) Mineralogy and management of soils rich in potassium containing minerals. Proceedings of the International Symposium on Balanced Fertilization, Ludhiana, India, during 22–25 November 2005, vol 1. International Potash Institute, Berne, Switzerland, pp 95–114

    Google Scholar 

  • Mukhopadhyay SS, Sharma S (2013) Nanoscience and nanotechnology: Cracking prodigal farming. J Bionanosci 7(1):497–502

    Article  CAS  Google Scholar 

  • Naik RR, Stone MO (2005) Integrating biomimetics. Mater Today 8:18–26

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM (1999) Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS (ed) Handbook of Nanostructured Materials and Nanotechnology. Academic, New York, USA, pp 577–635

    Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effect of nanoparticles in environment. Env Pollut 150:5–22

    Article  CAS  Google Scholar 

  • Pickering KD, Wiesner MR (2005) Fullerol-sensitized production reactive oxygen species in aqueous solution. Environ Sci Technol? 39: 1359–1365 doi: 10.1021/es048940x

    Google Scholar 

  • Nair R, Sheikh Wei Gao, Maekawa T, Yoshida Y, Ajayan PM, Sakthi-Kumar D (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol. doi:10.1166/jnn.2012.5775

    Google Scholar 

  • Saxena M, Maity S, Sarkar S (2014) Carbon nanoparticles in ‘biochan’ boost wheat (Triticum aestivum) plant growth. RSC Advances 4:39948–39954

    Article  CAS  Google Scholar 

  • Sharma V, Shukla RK, Saxena M, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of ZnO nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Shyla KK, Natarajan N (2014) Customising zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian J Sci Tech 7(9):1376–1381

    Google Scholar 

  • Singh M, Mukhopadhyay SS, Kiran-Jeet Kaur, R, Sharma S (2013) Inventors; Indian Council of Agricultural Research (New Delhi) assignee. Zinc in clay-mineral receptacles in nanoforms for their use as advanced materials including novel fertilizer. Indian Patent Application# 2093/DEL/2013 dt 11 July 2013. Patent Pub No 20925; The Indian Patent Office Journal Publ Date: 16.01.2015

    Google Scholar 

  • Sooyeon L, Sunghyun K, Saeyeon K, Insook L (2013) Assessment of phytotoxicity of ZnO NPs on medicinal plant Fagupyrumes culentum. Environ Sci Pollut Res 20:848–854

    Article  Google Scholar 

  • Sparks DL (2004) Grand challenges and opportunities in basic soil science research and the discipline of soil science. ISBN 1 920842 26 8 Super Soil 2004 Published by the Author

    Google Scholar 

  • Srinivasan C, Saraswati R (2010) Nanoagriculture-carbon nanotubes into living walled plant cells through cellulase-induced nanoholes. RSC Advances 2:398–400

    Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stella WYW, Priscilla TYL, Djurisic AB, Kenneth MYL (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate zinc size and iron solubility. Analyt Bioanalyt Chem 396(2):609–618

    Article  Google Scholar 

  • Stephan MK (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  Google Scholar 

  • Sultan Y, Walsh R, Monreal CM, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromol J 10:1149–1154

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetser B (2009) Studies on toxicity of multi walled carbon nanotubes on suspension of rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012a) Microbial synthesis of phosphorous nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  • Tarafdar JC, Xiang Y, Wang WN, Dong Q, Biswas P (2012b) Standardization of size, shape and concentration of nanoparticles for plant application. Appl Biol Res 14:138–144

    Google Scholar 

  • Tarafdar JC, Devakumar C, Chhonkar PK (2013) National Academy of Agricultural Sciences Policy Paper#63 Nanotechnology in Agriculture: scope and current relevance. National Academy of Agricultural Sciences New Delhi India, p 20.

    Google Scholar 

  • Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–400

    Article  CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nano agriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y (2012) Fullerene enhanced accumulation of p, p’—DDE in agricultural crop species. Environ Sci Technol 46:9315–9323

    Article  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y (2013) MU carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in farm agricultural plants. Environ Sci Technol 47:12539–12547

    Article  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture (2002) Nanoscale science and engineering for agriculture and food systems. Report submitted to Cooperative State Research, Education and Extension Service, United States Department of Agriculture, National Planning Workshop. Washington DC, USA, 18–19 November 2002

    Google Scholar 

  • United States Environmental Protection Agency (2007) Nanotechnology white paper. US Environmental Protection Agency Report EPA 100/B-07/001, Washington DC 20460, USA, p 135

    Google Scholar 

  • Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV (2012) Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multiwalled nano tubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841–851

    Article  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JA (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Max Lu GQ (2008) Nanomaterials in soils. Geoderma 146:291–302

    Article  CAS  Google Scholar 

  • Zhu H, Han JQ, Jin Y (2008) Uptake, translocation, accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

  • Zubarev ER (2013) Nanoparticle synthesis: any way you want it. Nat Nanotechnol 8:396–397. doi:10.1038/nnano.2013.109

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sankar Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mukhopadhyay, S.S., Kaur, N. (2016). Nanotechnology in Soil-Plant System. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_13

Download citation

Publish with us

Policies and ethics