Agri-nanotechniques for Plant Availability of Nutrients

  • Pabitra Kumar ManiEmail author
  • Sudeshna Mondal


Nanotechnology has opened up a number of scopes for novel applications in the field of agricultural industries, because of several unique physicochemical properties of nanoparticles (NPs), i.e., high surface area, high reactivity, tunable pore size, and particle morphology. Nanoparticles may be treated as “magic bullets,” containing nanopesticides, nanofertilizers, etc., which will trigger specific cellular organelles in the plant to release their contents. So far, little information is available on the behavior of nanofertilzers in soil system, as well as utilization of nanoparticles for smart delivery of fertilizers. Still NPs have already shown promise for their potential utility in crop production in the form of nanofertilizers, nanopesticide, nanoherbicides around the world. The present chapter highlights the key role of nanoparticles in soil systems, their characterization, behavior, mobility, and effective means for the smart delivery of fertilizers that has a strong bearing on the growth and yield of plants. Nano-based slow-release or controlled-release (CR) fertilizers have the potential to increase the efficiency of nutrient uptake. In this chapter, utilization of nanoparticles for delivery of fertilizers in an agricultural production system for the sustainable environment has been described.


Nanoparticles Nanofertilzers Smart delivery Nutrients 


  1. Adhikari T (2014) Implications of nanotechnology in soil science and plant nutrition. In: Proceedings of seventh international conference on smart materials, structures and systems, Bangalore, India, 8–11 July 2014, p 12Google Scholar
  2. Ajayan PM, Schadler LS, Braun PV (eds) (2003) Nanocomposite science and technology. Wiley-VCH Verlag GmbH and Co, KGaA, WeinheimGoogle Scholar
  3. Al-Amin Sadek MD, Jayasuriya HP (2007) Nanotechnology prospects in agricultural context: an overview. In: Proceedings of the international agricultural engineering conference, Bangkok, 3–6 Dec 2007, p 548Google Scholar
  4. Al-Busaidi A, Yamamoto T, Inoue A, Egrinya Eneji (2008) Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. In: 3rd international conference on water resources and arid environments and the 1st Arab water forum, Riyadh, Saudi Arabia, 16–19 Nov 2008, p 29Google Scholar
  5. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng Res 28:1CrossRefGoogle Scholar
  6. Allen ER, Hossner LR, Ming DW, Henninger DL (1993) Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Sci Soc Am J 57:1368–1374PubMedCrossRefGoogle Scholar
  7. Anadão P (2012) Polymer/clay nanocomposites: concepts, researches, applications and trends for the future. In: Ebrahimi F (ed) Nanocomposites—new trends and developments. InTech, Croatia, p 514Google Scholar
  8. Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342–347PubMedPubMedCentralCrossRefGoogle Scholar
  9. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641PubMedCrossRefGoogle Scholar
  10. Azeem B, Kushaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181:11–21PubMedCrossRefGoogle Scholar
  11. Banfield JF, Zhang H (2001) Nanoparticles in the environment. Chapter 1. In: Banfield JF, Navrotsky A (eds) Nanoparticles and the environment. Mineralogical Society of America, Washington, DC, pp 1–58Google Scholar
  12. Bansiwal AK, Rayalu SS, Labhasetwar NK, Juwarkar AA, Devotta S (2006) Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J Agric Food Chem 54:4773–4779PubMedCrossRefGoogle Scholar
  13. Bastús NG, Casals E, Vázquez-Campos S, Puntes V (2008) Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxico 2(3):99–112CrossRefGoogle Scholar
  14. Bastús NG, Casals E, Ojea I, Varon M, Puntes V (2012) The reactivity of colloidal inorganic nanoparticles. In: Hashim AA (ed) The delivery of nanoparticles. InTech, Croatia, pp 377–400Google Scholar
  15. Bendall JS, Paderi M, Ghigliotti F, Li Pira NL, Lambertini V, Lesnyak V, Gaponik N, Visimberga G. Eychmülle, A, Sotomayor Torres CM, Welland ME, Gieck C, Marchese L (2010) Layer-by-layer all-inorganic quantum dot-based LEDs: a simple procedure with robust performance. Adv Funct Mater 20:3298–3302Google Scholar
  16. Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393PubMedCrossRefGoogle Scholar
  17. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441PubMedCrossRefGoogle Scholar
  18. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32PubMedCrossRefGoogle Scholar
  19. Brady NC, Weil RR (1996) The nature and properties of soils. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  20. Breck DW (1974) Zeolite molecular sieves. Wiley, New YorkGoogle Scholar
  21. Broos K, Warne J, Heemsbergen DA, Stevens D, Barnes MB, Correll RL, Mclaughlin MJ (2007) Soil factors controlling the toxicity of Copper and Zinc to microbial processes in Australian Soils. Environ Toxi Chem 26(4):583–590CrossRefGoogle Scholar
  22. Buffle J (2006) The key role of environmental colloids/nanoparticles for the sustainability of life. Environ Chem 3:155–158CrossRefGoogle Scholar
  23. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102PubMedCrossRefGoogle Scholar
  24. Calabi-Floody M, Bendall JS, Jara AA, Welland ME, Theng BKG, Rumpel C, de la Luz Mora M (2011) Nanoclays from an Andisol: extraction, properties and carbon stabilization. Geoderma 161:159–167CrossRefGoogle Scholar
  25. Casals E, Vázquez-Campos S, Bastús NG, Puntes V (2008) Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological systems. TrAC Trends Anal Chem 27(8):672–683CrossRefGoogle Scholar
  26. Chaudhry Q, Castle L, Watkins R (eds) (2010) Nanotechnologies in food. Royal Society of Chemistry, CambridgeGoogle Scholar
  27. Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31Google Scholar
  28. Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326CrossRefGoogle Scholar
  29. Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343PubMedCrossRefGoogle Scholar
  30. Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. Plos One 1–11Google Scholar
  31. Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A (2002) Edible antimicrobial films based on chitosan matrix. J Food Sci 67:1162–1169CrossRefGoogle Scholar
  32. Cornelis G, Thomas CD, McLaughlin MJ, Kirby JK, Beak DG (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76:891–902CrossRefGoogle Scholar
  33. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  34. Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Exp Polym Lett 4(8):509–515CrossRefGoogle Scholar
  35. Cosgrove T (2005) Colloid science: principles, methods and applications. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  36. Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, 20–25 June 2010, pp 28–33Google Scholar
  37. Curkovic L, Cerjan-Stefanovic S, Filipan T (1997) Metal ion exchange by natural and modified zeolites. Water Res 31:1379–1382CrossRefGoogle Scholar
  38. Dana M, Lefroy RDB, Blair GJ (1994) A glasshouse evaluation of sulfur fertilizer sources for crops and pastures.1. Flooded and non-flooded rice. Aust J Agril Res 45:1497–1515CrossRefGoogle Scholar
  39. Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199PubMedCrossRefGoogle Scholar
  40. Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springer Plus 2:318. doi: 10.1186/2193-1801-2-318
  41. De Rosa G, Lopez-Moreno ML, De Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey J (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174Google Scholar
  42. De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91–94CrossRefGoogle Scholar
  43. Derjaguin B, Sidorenkov G (1941) Thermoosmosis at ordinary temperatures and its analogy with the thermomechanical effect in helium II. CR Acad Sci 32:622–626Google Scholar
  44. Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Switzerland, pp 55–75Google Scholar
  45. Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of Titania nanoparticles. Environ Sci Technol 40:7688–7693CrossRefGoogle Scholar
  46. Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303PubMedCrossRefGoogle Scholar
  47. Dwairi JM (1998) Renewable, controlled and environmentally safe phosphorous released in soil mixtures of NH4 +-phillipsite tuff and phosphate rock. Environ Geol 34:293–296CrossRefGoogle Scholar
  48. Eeberl DD (2008) Controlled release fertilisers using zeolites. USGS science for changing world. Tech Transfer, pp 1–3Google Scholar
  49. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling and simulation. Butterworth-Heinemann, Woburn, MAGoogle Scholar
  50. Fang J, Shan X, Wen B, Lin J, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109PubMedCrossRefGoogle Scholar
  51. Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95Google Scholar
  52. Ferguson JF, Gavis J (1972) Review of the arsenic cycle in natural waters. Water Res 11:1259–1274CrossRefGoogle Scholar
  53. Gabriels W, Goethals P, Hermans P, De Pauw N (2001) Development of short and long-term management options for bergelenput to avoid fish kills caused by algal blooms. Meded Rijksuniv Gent Fak Landbouwkd Toegep. Biol Wet 66:63–70Google Scholar
  54. Gao FQ, Hong FH, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu Yang P (2006) Mechanism of nano-nantase TiO2 on promoting photosynthetic carbon reaction of spinach–including complex of Rubisco-Rubisco activase. Biol Trace Elem Res 111:239–253PubMedCrossRefGoogle Scholar
  55. Garrido-Ramírez EG, Theng BKG, Mora ML (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions- a review. Appl Clay Sci 47:182–192CrossRefGoogle Scholar
  56. Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminum oxide nanoparticles As affected by pH and natural organic matter. Langmuir 24:12385–12391PubMedCrossRefGoogle Scholar
  57. Gladkovaa MM, Terekhovaa VA (2013) Engineered nanomaterials in soil: sources of entry and migration pathways. Univ Soil Sci Bull 68(3):129–134CrossRefGoogle Scholar
  58. Goertz HM (1993) Technology development in coated fertilisers. In: Proceedings Dahlia Greidinger memorial international workshop on controlled/slow release fertilisers, technion-israel institute of technology, Haifa, Israel, pp 102–109, Mar 7–12, 1993Google Scholar
  59. Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256(5062):1425–1427PubMedCrossRefGoogle Scholar
  60. Gumbo RJ, Ross G, Cloete ET (2008) Biological control of microcystis dominated harmful algal blooms. Afr J Biotechnol 7:4765–4773Google Scholar
  61. Guo J (2004) Synchrotron radiation, soft X-ray spectroscopy and nanomaterials. Int J Nanotechnol 1(1):193–225CrossRefGoogle Scholar
  62. Guo M, Zhu M, Falu WuL (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44(12):4206–4211CrossRefGoogle Scholar
  63. Guo X, Zenga L, Li X, Spark H (2008) Ammonium and potassium removal for anerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment. J Hazard Mater 151:125–133PubMedCrossRefGoogle Scholar
  64. Haack EA, Johnston C, Maurice PA (2008) Siderophore sorption to montmorillonite. Geochim Cosmochim Acta 72:3381–3397CrossRefGoogle Scholar
  65. Hashim N, Hussein MZ, Yahaya AH, Zainal Z (2007) Formation of zinc aluminium layered double hydroxides-4(2,4-dichlorophenoxy)butyrate nanocomposites by direct and indirect methods. Malaysian J Anal Sci 11(1):1–7Google Scholar
  66. He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethy cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34CrossRefGoogle Scholar
  67. Hernandez G, Diaz R, Notario del Pino JS, Gonzalez Martin MM (1994) NH4 + Na-exchange and NH4 +—release studies in natural phillipsite. Appl Clay Sci 9:29–137Google Scholar
  68. Heymann D, Jenneskens LW, Jehlicka J, Koper C, Vlietstra E (2003) Terrestrial and extraterrestrial fullerenes. Fullerenes Nanotubes Carbon Nanostruct 11(333):370Google Scholar
  69. Hochella MF Jr (2002) There’s plenty of room at the bottom: nanoscience in geochemistry. Geochim Cosmochim Acta 66:735–743CrossRefGoogle Scholar
  70. Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and Earth systems. Science 319:1631–1635PubMedCrossRefGoogle Scholar
  71. Hong FH, Yang F, Liu C, Gao Q, Wan ZG, Gu FG, Wu C, Ma ZN, Zhou J, Yang P (2005) Influence of nano–TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260PubMedCrossRefGoogle Scholar
  72. Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424PubMedCrossRefGoogle Scholar
  73. Iorio M, Pan B, Capasso R, Xing BS (2008) Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles. Environ Pollut 156:1021–1029Google Scholar
  74. Iran Nanotechnology Initiative Council (2009) First nano-organic iron chelated fertilizer invented in Iran [webpage on the Internet] Tehran, Iran: Iran Nanotechnology Initiative Council.
  75. Ji LL, Chen W, Zheng SR, Xu ZY, Zhu DQ (2009) Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25(1608):11613Google Scholar
  76. Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  77. Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279CrossRefGoogle Scholar
  78. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414PubMedCrossRefGoogle Scholar
  79. Kanel SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050Google Scholar
  80. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of Arsenic(III) from groundwater by nanoscale zerovalent iron. Environ Sci Technol 39(5):1291–1298PubMedCrossRefGoogle Scholar
  81. Kanel SR, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9:725–735CrossRefGoogle Scholar
  82. Karthikeyan K (2014) Naturally-occurring nano-clays in Indian soils: their role in plant nutrient management. In: Proceedings of seventh international conference on smart materials, structures and systems, Bangalore, India, pp 33–34, July 8–11, 2014Google Scholar
  83. Ke YC, Stroeve P (2005) Polymer-layered silicate and silica nanocomposites, 1st edn. Elsevier BV, AmsterdamGoogle Scholar
  84. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15. doi: 10.1007/s11051-013-1692-4
  85. Khedr MH, Omar AA, Abdel-Moaty SA (2006) Reduction of carbon dioxide intocarbon by freshly reduced CoFe2O4 nanoparticles. Mater Sci Eng A 432:26–33CrossRefGoogle Scholar
  86. Kim KS, Park M, Choi CL, Lee DH, Seo YJ, Kim CY, Kim JS, Yun S-IN, Ro H-M, Komarneni S (2011) Suppression of NH3 and N2O emissions by massive urea intercalation in montmorillonite. J Soils Sediments 11:416–422Google Scholar
  87. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin ML, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851PubMedCrossRefGoogle Scholar
  88. Kool PL, Diez Ortiz M, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719PubMedCrossRefGoogle Scholar
  89. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101(1):73–78Google Scholar
  90. Kretzschmar R, Schafer T (2005) Metal retention and transport on colloidal particles in the environment. Elements 1:205–210CrossRefGoogle Scholar
  91. Krichevskii GE (2010) Nanotechnologies: dangers and risks. Inspecting principles for nano technologies and nanomaterials. Nanotekhnol Okhrana Zdorov’ya 2(3):4Google Scholar
  92. Kumar R, Rawat KS, Mishra AK (2012) Nanoparticles in the soil environment and their behaviour: an overview. J App Natural Sci 4(2):310–324Google Scholar
  93. Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Annu Rev Chem Biomol Eng 1:37–58PubMedCrossRefGoogle Scholar
  94. Kundu S, Adhikari T, Coumar MV, Rajendiran S, Bhattacharyya R, Saha JK, Biswas AK, Subba Rao A (2013) Pine oleoresin: a potential urease inhibitor and coating material for slow-release urea. Curr Sci 104(8):1068–1071Google Scholar
  95. Lal R (2008) Soils and India’s food security. J Indian Soc Soil Sci 56:129–138Google Scholar
  96. Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of a nomaterials in porous media. Environ Sci Technol 38:5164–5169PubMedCrossRefGoogle Scholar
  97. Lefroy RDB, Dana M, Blair GJ (1994) A glasshouse evaluation of sulfur fertilizer sources for crops and pastures.3. Soluble and non-soluble sulfur and phosphorus sources for pastures. Aust J Agric Res 45:1525–1537CrossRefGoogle Scholar
  98. Leggo PJ (2000) An investigation of plant growth in an organo–zeolitic substrate and its ecological significance. Plant Soil 219:135–146CrossRefGoogle Scholar
  99. Li Z (2003) Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous Mesoporous Mat 61:181–188CrossRefGoogle Scholar
  100. Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10(7):2289–2295PubMedCrossRefGoogle Scholar
  101. Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67(9):769–779CrossRefGoogle Scholar
  102. Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1–13CrossRefGoogle Scholar
  103. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  104. Liu M, Liang R, Zhan F, Liu Z, Niu A (2007) Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym Int 56(6):729–737CrossRefGoogle Scholar
  105. Liu LS, Kost J, Fishman M, Hicks KB (2008) A review: controlled release systems for agricultural and food applications. In: Parris N, Liu LS, Song C, Shastri VP (eds) New delivery systems for controlled drug release from naturally occurring materials, ACS Symposium series, vol 992. pp 265–281Google Scholar
  106. Liu RQ, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686. doi: 10.1038/srep05686 PubMedGoogle Scholar
  107. Liu X, Feng Z, Zhang F, Zhang S, He X (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5:700–706CrossRefGoogle Scholar
  108. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism. Soybean Sci 21(3):168–171Google Scholar
  109. Malhi SS, Haderlin LK, Pauly DG, Johnson AM (2002) Improving fertiliser use efficiency. Better Crops 86:22–25Google Scholar
  110. Manikandan A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9(2):276–284CrossRefGoogle Scholar
  111. Manning BA, Hunt M, Amrhein C, Yarmoff JA (2002) Arsenic(III) and Arsenic(V) reactions with zero valent iron corrosion products. Environ Sci Technol 36(24):5455–5461PubMedCrossRefGoogle Scholar
  112. Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 25–67Google Scholar
  113. Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:124–153Google Scholar
  114. Melendi G, Fernandez-Pacheo P, Coronado R, Corredor MJ, Testillano E, Risueno PS, Marquina MC (2008) Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195Google Scholar
  115. Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007a) The structure of ferrihydrite, a nanocrystalline material. Science 316:1726–2729PubMedCrossRefGoogle Scholar
  116. Michel FM, Ehm L, Liu G, Han WQ, Antao SM, Chupas PJ, Lee PL, Knorr K, Eulert H, Kim J, Grey CP, Celestian AJ, Gillow J, Schoonen MAA, Strongin DR, Parise JB (2007b) Similarities in 2-and 6-line ferrihydrite based on pair distribution function analysis of X-ray total scattering. Chem Mater 19:1489–1496CrossRefGoogle Scholar
  117. Millán G, Agosto F, Vázquez M, Botto L, Lombardi L, Juan L (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Ciene Inv Agr 35:245–254Google Scholar
  118. Moaveni P, Kheiri T (2011) TiO2 nano particles affected on maize (Zea mays L.). In: 2nd international conference on agricultural and animal science. IACSIT Press, Maldives, 25–27 Nov 2011, pp 160–163Google Scholar
  119. Moore MN (2006) Do nanoparticles present ecotoxicological risks for health of the aquatic environment? Environ Int 32:967–976PubMedCrossRefGoogle Scholar
  120. Murr LE, Soto KF, Esquivel EV, Bang JJ, Guerrero PA, Lopez DA, Ramirez DA (2004) Carbon nanotubes and other fullerene related nanocrystals in the environment: a TEM study. J Mater Sci 56:2831Google Scholar
  121. Mukhopadhyay R, De N (2014) Nano clay polymer composite: synthesis, characterization, properties and application in rainfed agriculture. Global J Bio Biotechnol 3(2):133–138Google Scholar
  122. NAAS (2013) Nanotechnology in agriculture: scope and current relevance. Policy Paper No 63, National Academy of Agricultural Sciences, New Delhi, India, pp 1–20Google Scholar
  123. Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26Google Scholar
  124. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232Google Scholar
  125. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12(3):2212–2220Google Scholar
  126. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163Google Scholar
  127. Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM (1999) Biopolymer and polymer nanoparticles and their biomedical applications. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology, Academic Press, New York, USA, pp 577–635Google Scholar
  128. Namjesnik-Dejanovic K, Maurice PA (2001) Conformations and aggregate structures of sorbed natural organic matter on muscovite and hematite. Geochim Cosmochim Acta 65:1047–1057CrossRefGoogle Scholar
  129. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  130. No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72:87–100CrossRefGoogle Scholar
  131. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefGoogle Scholar
  132. Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Science Society of America, Madison, WI, pp 89–159Google Scholar
  133. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedPubMedCentralCrossRefGoogle Scholar
  134. O’Hena S, Krug T, Quinn J, Clausen C, Geiger C (2006) Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediation 16(2):35–56CrossRefGoogle Scholar
  135. Oya A, Kurokawa Y, Yasuda H (2000) Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci 35(5):1045–1050CrossRefGoogle Scholar
  136. Pan B, Xing B (2010) Manufactured nanoparticles and their sorption of organic chemicals. Adv Agron 108:137–181Google Scholar
  137. Panwar J, Jain N, Bhargaya A, Akhtar MS, Yun YS (2012) Positive effect of zinc oxide nanoparticels on tomato plants: a step towards developing “Nano-fertilizers”. In: Proceedings of 3rd international conference on environmental research and technology (ICERT), May 30–June 1, 2012, Penang, Malaysia, pp 348–352Google Scholar
  138. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15PubMedCrossRefGoogle Scholar
  139. Pereira EI, Minussi FB, Cruz CCT, Bernardi ACC, Ribeiro C (2012) Urea-montmorilloniteextruded nanocomposites: a novel slow-release material. J Agric Food Chem 60:5267–5272Google Scholar
  140. Perrin TS, Drost DT, Boettinger JL, Norton JM (1998) Ammonium-loaded clinoptilolite: a slow-release nitrogen fertilizer for sweet corn. J Plant Nutri 21:515–530CrossRefGoogle Scholar
  141. Pfeiffer C, Rehbock C, Hu¨hn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ (2014) Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J Roy Soc Interface 11:20130931Google Scholar
  142. Pignatello JJ (1998) Soil organic matter as a nanoporous sorbent of organic pollutants. Adv Colloid Inter Sci 76–77:445–467CrossRefGoogle Scholar
  143. Pino N, Arteaga Padron JS, Gonzdlez Martin IJ, Garcfa Herndndez JE (1995) Phosphorus and potassium release from phillipsite-based slow-release fertilizers. J Control Release 34:25–29CrossRefGoogle Scholar
  144. Plank NOV, Howard I, Rao A, Wilson MWB, Ducati C, Mane RS, Bendall JS, Louca RRM, Greenham NC, Miura H, Friend RH, Snaith HJ, Welland ME (2009) Efficient ZnO nanowire solid-state dye-sensitized solar cells using organic dyes and core-shell nanostructures. J Phys Chem C 113:18515–18522CrossRefGoogle Scholar
  145. Prasad R, Bagde US, Varma A (2012) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11(73):13746–13752CrossRefGoogle Scholar
  146. Preetha SP, Subramanian KS, Sharmila RC (2014) Characterization of slow release of sulphur nutrient—a zeolite based nano-fertilizer. Int J Dev Res 4(2):229–233Google Scholar
  147. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmere RG, Hernandez-Viezcasc JA, Zhaoc L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Nat Acad Sci USA 109:E2451–E2456PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rahale CS (2010) Nutrient release pattern of nano-fertilizer formulations. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, IndiaGoogle Scholar
  149. Rai V, Acharya S, Dey AS., N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotchnol 3:315–324Google Scholar
  150. Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saran RP (2013) Review article, scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1(03):041–044Google Scholar
  151. Ramesh K, Biswas AK, Somasundaram J, Subbarao A (2010) Nanoporous zeolites in farming: current status and issues ahead. Curr Sci 99:760–764Google Scholar
  152. Ramesh K, Reddy DD (2011) Zeolites and their potential uses in agriculture. Adv Agron 113:219–241CrossRefGoogle Scholar
  153. Roco MC (2003) Nanotechnology convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346PubMedCrossRefGoogle Scholar
  154. Rose R (2002) Slow release fertilizers 101. In: Dumroese RK, Riley LE, Landis TD (eds) (Technical coordinators) National proceedings: forest and conservation nursery associations-1999, 2000, and 2001. Proceedings RMRS-P-24. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, pp 304–308Google Scholar
  155. Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton D, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355PubMedCrossRefGoogle Scholar
  156. Saigusa M (2000) Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on Andisol. J Plant Nutr 23:1485–1493CrossRefGoogle Scholar
  157. Santoso D, Lefroy RDB, Blair GJ (1995) Sulfur and phosphorus dynamics in an acid soil/crop system. Aust J Soil Res 33:113–124CrossRefGoogle Scholar
  158. Sartain JB (2010) Food for turf: slow-release nitrogen. Grounds Mainten 2:6–14Google Scholar
  159. Sawant R, Hurley J, Salmaso S, Kale A, Tolcheva E, Levchenko T, Torchilin V (2006) Smart drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconj Chem 17(4):943–949CrossRefGoogle Scholar
  160. Schrick B, Hydutsky W, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193 CrossRefGoogle Scholar
  161. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53Google Scholar
  162. Shaviv A (2005) Controlled release fertilizers, IFA International Workshop on Enhanced-efficiency Fertilizers, Frankfurt, International Fertilizer Industry Association, Paris, FranceGoogle Scholar
  163. Sheta AS, Falatah AM, Al-Sewailem MS, Khaled EM, Sallam ASH (2003) Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous Mesoporous Materials 61:127–136CrossRefGoogle Scholar
  164. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F, (eds) Nanotechnology and plant sciences, Springer, Switzerland, pp 19–35Google Scholar
  165. Singh AL, Chaudhari V (1995) Source and mode of sulfur application on ground nut productivity. J Plant Nutr 18:2739–2759CrossRefGoogle Scholar
  166. Six J, Feller C, Denef K, Ogle SM, Moraes JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie 22:755–775CrossRefGoogle Scholar
  167. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 81–101Google Scholar
  168. Sparks DL, Jardine PM (1984) Comparison of kinetic equations to describe K-Ca exchange in pure and in mixed systems. Soil Sci 138:115–122CrossRefGoogle Scholar
  169. Subramanian KS, Paulraj C, Natarajan S (2008) Nanotechnological approaches in nutrient management. In: Chinnamuthu CR, Chandrasekaran B, Ramasamy C (eds) Nanotechnology applications in agriculture. TNAU technical bulletin, Coimbatore, India, pp 37–42Google Scholar
  170. Subramanian KS, Rahale CS (2009) Synthesis of nanofertiliser formulations for balanced nutrition. In: Proceedings of the Indian society of Soil Science-Platinum Jubilee Celebration, December 22–25, IARI, New Delhi, India, pp 85Google Scholar
  171. Subramanian KS, Rahale CS (2012) Nano-fertilizers—synthesis, characterization and applications. In: Proceedings of the application of nanotechnology in soil science & plant nutrition research, September 18–27, IISS, Bhoopal, India, p 107Google Scholar
  172. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Switzerland, pp 69–80Google Scholar
  173. Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agril Sci 81(10):887–893Google Scholar
  174. Subramanian KS, Tarafdar JC (2009) Nanotechnology in soil science. In: Proceedings of the Indian society of Soil Science-Platinum Jubilee celebration, December 22–25, IARI, New Delhi, India, p 199Google Scholar
  175. Sultan Y, Walsh R, Monreal CM, De Rosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromol J 10:1149–1154CrossRefGoogle Scholar
  176. Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  177. Tai WP, Kim YS, Kim JG (2003) Fabrication and magnetic properties of Al2O3/Co nanocomposites. Mater Chem Phys 82(2):396–400CrossRefGoogle Scholar
  178. Teodorescu M, Lungu A, Stanescu PO, Neamtu C (2009) Preparation and properties of novel slow-release NPK agrochemical formulations based on poly(acrylic acid) hydrogels and liquid fertilizer. Indust Eng Chem Res 48:6527–6534CrossRefGoogle Scholar
  179. Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–399CrossRefGoogle Scholar
  180. Tourinho PS, Van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxico Chem 31(8):1679–1692Google Scholar
  181. Trenkel ME (2010) Slow-and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. International Fertilizer Industry Association, Paris, France, pp 1–162Google Scholar
  182. Unrine J, Bertsch P, Hunyadi S (2008) Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments. In: Grassian V (ed) Nanoscience and nanotechnology: environmental and health impacts. John Wiley, New York, pp 345–366CrossRefGoogle Scholar
  183. Venitsianov EV, Vinichenko VN, Guseva TV (2003) Ekologicheskii monitoring: shag za shagom (Ecological Monitoring: Step by Step). In: Zaik EA (ed) Moscow University Soil Science Bulletin, Vestnik Moskovskogo Universiteta, Pochvovedenie, Moscow, pp 282–298Google Scholar
  184. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme.Langmuir 20:6800–6807Google Scholar
  185. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  186. Waychunas GA, Kim CS, Banfield JA (2005) Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433CrossRefGoogle Scholar
  187. Wang XL, Tao S, Xing BS (2009) Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environ Sci Technol 43:6214–6219PubMedCrossRefGoogle Scholar
  188. Weatherley LR, Miladinovic ND (2004) Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res 38(20):4305–4312PubMedCrossRefGoogle Scholar
  189. Wei YX, Ye ZF, Wang YL, Ma MG, Li YF (2011) Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a-sequencing batch reactor process. Environ Technol 32:1337–1343PubMedCrossRefGoogle Scholar
  190. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116CrossRefGoogle Scholar
  191. Wilson MA, Tran NH, Milev AS, Kannangara G, Volk H, Lu G (2008) Nanomaterials in soils. Geoderma 146(1):291–302CrossRefGoogle Scholar
  192. Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym 72(2):240–247CrossRefGoogle Scholar
  193. Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190PubMedCrossRefGoogle Scholar
  194. Yang GCC, Tu HC, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Separ Purif Technol 58:166–172CrossRefGoogle Scholar
  195. Yeh JM, Chang KC (2008) Polymer/layered silicate nanocomposite anticorrosive coatings. J Indust Engg Chem 14:275–280CrossRefGoogle Scholar
  196. Zaarei D, Sarabi AA, Sharif F, Kassiriha SM (2008) Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates. J Coat Technol Res 5:241CrossRefGoogle Scholar
  197. Zha L, Hu J, Wang C, Fu S, Luo M (2002) The effect of electrolyte on the colloidal properties of poly (N-isopropyl acrylamidecodimethylaminoethylmethacrylate) microgel latexes. Colloid Polym Sci 280:1116–1121CrossRefGoogle Scholar
  198. Zhan JJ, Zheng TH, Piringer G, Day C, Mcpherson CL, Lu YF, Papadopoulos K, John VT (2008) Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environ Sci Technol 42:8871–8876PubMedCrossRefGoogle Scholar
  199. Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ (2010) Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. ChemPhysChem 11:730–735PubMedCrossRefGoogle Scholar
  200. Zhang F, Wang R, Xiao Q, Wang Y, Zhang J (2006) Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience 11:18–26Google Scholar
  201. Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano–TiO2on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Agricultural Chemistry and Soil ScienceBidhan Chandra Agricultural UniversityMohanpurIndia
  2. 2.AICRP on Soil Testing and Crop ResponseBidhan Chandra Agricultural UniversityKalyaniIndia

Personalised recommendations