Role of Nanoparticles for Delivery of Genetic Material

  • Mariya V. KhodakovskayaEmail author
  • Mohamed H. Lahiani


Use of nano-sized materials as systems for delivery of genetic material into living cells is new and promising approach. Recent data showed that carbon-based, metal-based, composite nanoparticles and polymer nanoparticles have a potential to carry nucleic acids into plant cells. The unique ability of nanomaterials to penetrate plant cell wall and move inside the cell in fast manner can open ways for improvement of a number of transformation techniques including particle bombardment. However, experimental attempts to use nanomaterials as carriers of DNA/RNA in planta are rare. Here, we summarize the reports on successful delivery and integration of genetic material inside plants by using different classes of nanomaterials as delivery systems.


Genetic material Nanodelivery Mesoporous silica nanoparticle system Multiwalled carbon nanotubes Plant transformation 


  1. Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther 22:1075–1083CrossRefPubMedPubMedCentralGoogle Scholar
  2. Khodakovskaya MV, Biris AS (2009) Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507 A1—patent applicationGoogle Scholar
  3. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135CrossRefPubMedGoogle Scholar
  4. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033CrossRefPubMedGoogle Scholar
  5. Křenek P, Šamajová O, Luptovčiak I, Doskočilová A, Komis G, Šamaj J (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33(6 Pt 2):1024–1042PubMedGoogle Scholar
  6. Kumari S, Swetha M, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20:256–275CrossRefPubMedGoogle Scholar
  7. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interf 5:7965–7973CrossRefGoogle Scholar
  8. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619CrossRefGoogle Scholar
  9. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010CrossRefPubMedGoogle Scholar
  10. Martin-Ortigosa S, Valenstein JS, Lin VS, Trewyn BG, Wang K (2012a) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582CrossRefGoogle Scholar
  11. Martin-Ortigosa S, Valenstein JS, Sun W, Moeller L, Fang N, Trewyn BG, Lin VS, Wang K (2012b) Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. small 8:413–422Google Scholar
  12. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547CrossRefPubMedGoogle Scholar
  13. Murugan K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V (2015) Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomed 10:2191Google Scholar
  14. Nima ZA, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Advances 4:64985–64993CrossRefGoogle Scholar
  15. Ochatt S (2013) Plant cell electrophysiology: applications in growth enhancement, somatic hybridisation and gene transfer. Biotechnol Adv 31:1237–1246CrossRefPubMedGoogle Scholar
  16. Shi X, von Dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714–719CrossRefPubMedPubMedCentralGoogle Scholar
  17. Silva AT, Nguyen A, Ye C, Verchot J, Moon JH (2010) Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol 10:291–2229-10-291Google Scholar
  18. Singh S (2013) Nanomaterials as non-viral siRNA delivery agents for cancer therapy. BioImpacts: BI 3:53Google Scholar
  19. Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977CrossRefPubMedGoogle Scholar
  20. Torney F, Trewyn BG, Lin V, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mariya V. Khodakovskaya
    • 1
    • 2
    Email author
  • Mohamed H. Lahiani
    • 1
  1. 1.The University of ArkansasLittle RockUSA
  2. 2.Institute of Biology and Soil ScienceFar-Eastern Branch of Russian Academy of SciencesVladivostokRussian Federation

Personalised recommendations