Plant Nanotechnology: An Overview on Concepts, Strategies, and Tools

  • Joydeep Banerjee
  • Chittaranjan KoleEmail author


Nanotechnology is the branch of science dealing with manipulation of matter on an atomic, molecular, or supramolecular level. Application of nanoparticles is of great scientific interest due to diverse applications of nanotechnology in the field of life sciences, medicine, electronics, and energy. Since the last couple of decades, several research groups worked on the application of nanoscience in the field of agriculture. Efficient utilization of agrochemicals and manipulation of several physiological parameters of plants are key research areas of agriculture nanotechnology. This introductory chapter presents a brief glimpse on the present global scenario of research on plant nanotechnology and several pros and cons of nanoscience in the fields of plant sciences particularly agriculture.


Nanoparticles Agriculture Nanotechnology Germination Translocation Accumulation Yield Agrochemicals Physiology Gene expression Safety issues 


  1. Abhilash M (2010) Potential applications of nanoparticles. Int J Pharma Bio Sci V1(1)Google Scholar
  2. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55Google Scholar
  3. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMedGoogle Scholar
  4. Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32:577–584CrossRefGoogle Scholar
  5. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827CrossRefPubMedGoogle Scholar
  6. Bala N, Dey A, Das S, Basu R, Nandy P (2014) Effect of hydroxyapatite nanorod on chickpea (Cicer arietinum) plant growth and its possible use as nano-fertilizer. Iran J Plant Physiol 4(3):1061–1069Google Scholar
  7. Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 394:178–183CrossRefPubMedGoogle Scholar
  8. Banerjee J, Das N, Dey P, Maiti MK (2010) Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 402:637–643CrossRefPubMedGoogle Scholar
  9. Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258CrossRefPubMedGoogle Scholar
  10. Bernhardt ES, Colman BP, Hochella JrMF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965CrossRefPubMedGoogle Scholar
  11. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441CrossRefPubMedGoogle Scholar
  12. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7(5):e34783CrossRefPubMedPubMedCentralGoogle Scholar
  13. Buzea C, Blandino IIP, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR172Google Scholar
  14. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon-nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931Google Scholar
  15. Chen H (ed) (2002) Nanoscale science and engineering for agriculture and food systems. In: Proceedings of USDA conference, Washington DC, USA, 18–19 Nov 2002Google Scholar
  16. Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617CrossRefPubMedGoogle Scholar
  17. Ding M, Bowman L, Castranova V (2012) Luciferase reporter system for studying the effect of nanoparticles on gene expression. Meth Mol Biol 906:403–414. doi: 10.1007/978-1-61779-953-2_33 Google Scholar
  18. Dugas DV, Bartel B (2008) Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 67:403–417CrossRefPubMedGoogle Scholar
  19. Dunwell JM, Gibbings JG, Mahmood T, Naqvi SMS (2008) Germin and germin-like proteins: evolution, structure, and function. Crit Rev Plant Sci 27:342–375CrossRefGoogle Scholar
  20. Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106CrossRefPubMedGoogle Scholar
  21. Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 8(12):e84441CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hischemoller A, Nordmann J, Ptacek P, Mummenhoff K, Hasse M (2009) In-vivo imaging of the uptake of unconversion nanoparticles by plant roots. J Biomed Nanotechnol 5:278–284CrossRefPubMedGoogle Scholar
  23. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924CrossRefPubMedGoogle Scholar
  24. Irin F, Shrestha B, Cañas JE, Saed MA, Green MJ (2012) Detection of carbon nanotubes in biological samples through microwave-induced heating. Carbon 50:4441–4449CrossRefGoogle Scholar
  25. Janczak CM, Aspinwall CA (2012) Composite nanoparticles: the best of two worlds. Anal Bioanal Chem 402(1):83–89. doi: 10.1007/s00216-011-5482-5 CrossRefPubMedGoogle Scholar
  26. Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644PubMedGoogle Scholar
  27. Khodakovskaya MV, Biris AS (2009) Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507 A1—patent applicationGoogle Scholar
  28. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–1033CrossRefPubMedGoogle Scholar
  29. Khodakovskaya M, Kim B-M, Jong Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as fertilizers: effects on tomato growth, reproductive system and soil microbial community. Small 9(1):115–123CrossRefPubMedGoogle Scholar
  30. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. doi: 10.1021/nl903518f PubMedPubMedCentralGoogle Scholar
  32. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973CrossRefPubMedGoogle Scholar
  33. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon 81:607–619CrossRefGoogle Scholar
  34. Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, White JC, Vanek T (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mat 241–242:55–62CrossRefGoogle Scholar
  35. Lee SH, Pie J-E, Kim Y-R, Lee HR, Son SW, Kim M-K (2012) Effects of zinc oxide nanoparticles on gene expression profile in human keratinocytes. Mol Cell Toxicol 8(2):113–118CrossRefGoogle Scholar
  36. Li ZZ, Chen JF, Liu F, Lu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246CrossRefPubMedGoogle Scholar
  37. Lin D, Xing B (2007) Phytotoxicity of nanoparticles:inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefPubMedGoogle Scholar
  38. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132CrossRefPubMedGoogle Scholar
  39. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010CrossRefPubMedGoogle Scholar
  40. López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320. doi: 10.1021/es903891g
  41. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRefPubMedGoogle Scholar
  42. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):68–172Google Scholar
  43. Lu A-H, Hui A, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244. doi: 10.1002/anie.200602866 CrossRefPubMedGoogle Scholar
  44. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi: 10.1016/j.scitotenv.2010.03.031 CrossRefPubMedGoogle Scholar
  45. Mnyusiwalla A, Daar AS, Singer PA (2003) ‘Mind the gap”: science and ethics in nanotechnology. Nanotechnology 14:R9. doi: 10.1088/0957-4484/14/3/201 CrossRefGoogle Scholar
  46. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia Int J Cytol Cytosyst Cytogenet 62(2):161–165. doi: 10.1080/00087114.2004.10589681 Google Scholar
  47. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  48. Ngo QB, Dao TH, Nguyen HC, Tran XT, Nguyen TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:015016Google Scholar
  49. Nima ZA, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv 4:64985–64993CrossRefGoogle Scholar
  50. Panáčeka A, Kolářb M, Večeřováb R, Pruceka R, Soukupováa J, Kryštofc V, Hamalb P, Zbořila R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340CrossRefGoogle Scholar
  51. Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545CrossRefPubMedGoogle Scholar
  52. Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45(2):762–768CrossRefPubMedGoogle Scholar
  53. Rashidzadeh A, Ali O, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co- acrylamide)/Clinoptilolite and its application as slow release fertilizer. J Polymer Res 21:344. doi: 10.1007/s10965-013-0344-9 CrossRefGoogle Scholar
  54. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498CrossRefPubMedPubMedCentralGoogle Scholar
  55. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata—an endemic and endangered medicinal tree taxon. Nano Vis 2(1–3):61–68Google Scholar
  56. Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233. doi: 10.1007/s12010-012-9759-8 CrossRefPubMedGoogle Scholar
  57. Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1–8CrossRefGoogle Scholar
  58. Siddiqi NJ (2014) Effect of gold nanoparticles on superoxide dismutase and indoleamine 2, 3-dioxygenase in various rat tissues. Indian J Biochem Biophys 51(2):156–159PubMedGoogle Scholar
  59. Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomat Biostruct 3(3):115–122Google Scholar
  60. Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504Google Scholar
  61. Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811CrossRefPubMedGoogle Scholar
  62. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tan XM, Fugetsu B (2007) Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288CrossRefGoogle Scholar
  64. Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487CrossRefGoogle Scholar
  65. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803CrossRefGoogle Scholar
  66. Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya M (2012) Specific surface chemistry of carbon nanotubes can determine their biological effects in planta. Small 8(15):2328–2334CrossRefPubMedGoogle Scholar
  67. Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Sig Behav 3:603–605CrossRefGoogle Scholar
  68. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7(10):e47674CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhang F, Wang R, Xiao Q, Wang Y, Zhang J (2006) Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience 11:18–26Google Scholar
  70. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91CrossRefPubMedGoogle Scholar
  71. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Survey Selection and Mass ProductionBidhan Chandra Agricultural UniversityMohanpurIndia
  2. 2.Bidhan Chandra Agricultural UniversityMohanpurIndia
  3. 3.Jacob School of Biotechnology and BioengineeringSam Higginbottom Institute of Agriculture, Technology and SciencesAllahabadIndia

Personalised recommendations