Skip to main content

Mitochondrial Therapeutic Approaches in Parkinson’s Disease

  • Chapter
  • First Online:
Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease

Abstract

Mitochondria play a pivotal role in cellular metabolism since they regulate key aspects of cellular metabolism such as ATP production, intracellular calcium homeostasis, and endogenous reactive oxygen species production and decide cellular fate by regulating programmed cell death. Neurons are postmitotic cells that rely almost entirely on mitochondrial metabolism for ATP production, which renders these cells especially vulnerable to mitochondrial dysfunction. A great body of evidence links mitochondrial dysfunction to Parkinson’s disease (PD) etiopathogenesis, where mitochondrial abnormalities have been described in the brain and peripheral tissues. The identification of mutations that affect mitochondria in familial PD cases has provided a great inroad for the study of molecular mechanisms and placed mitochondria dysfunction as an upstream event in PD pathology. Previously we have proposed a mitochondrial cascade hypothesis for PD pathology, which allows inferring that mitochondria may be the bridge between sporadic and familial Parkinson’s disease. Here we review the latest advances on mitochondrial-targeted therapeutic approaches proposed for PD and discuss their potential as disease-modifying strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-Hydroxydopamine

ASYN:

alpha-Synuclein

CoQ10:

Coenzyme Q10

Cybrid:

Cytoplasmic hybrid

DA:

Dopamine

ETC:

Electron transport chain

HDAC6:

Histone deacetylase 6

LBs:

Lewy bodies

MitoQ:

Mitoquinone

MPP+ :

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,4-tetrahydropyridine

mtDNA:

Mitochondrial DNA

PARL:

Presenilin-associated rhomboid-like

PD:

Parkinson’s disease

PGC1α:

Peroxisome proliferator-activated receptor-γ coactivator 1α

PINK1:

PTEN-induced kinase 1

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

SOD:

Superoxide dismutase

TPP:

Triphenyl phosphonium

References

  1. Mejia, E.M., Hatch, G.M.: Mitochondrial phospholipids: role in mitochondrial function. J. Bioenerg. Biomembr. (2015). doi:10.1007/s10863-015-9601-4

    PubMed  Google Scholar 

  2. Kaniak-Golik, A., Skoneczna, A.: Mitochondria-nucleus network for genome stability. Free Radic. Biol. Med. (2015). doi:10.1016/j.freeradbiomed.2015.01.013

    PubMed  Google Scholar 

  3. Busiello, R.A., Savarese, S., Lombardi, A.: Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol. 6, 36 (2015). doi:10.3389/fphys.2015.00036

    Article  PubMed  PubMed Central  Google Scholar 

  4. MacAskill, A.F., Kittler, J.T.: Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102–112 (2010). doi:10.1016/j.tcb.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  5. Benard, G., et al.: Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat. Neurosci. 15, 558–564 (2012). doi:10.1038/nn.3053

    Article  CAS  PubMed  Google Scholar 

  6. Hall, C.N., Klein-Flugge, M.C., Howarth, C., Attwell, D.: Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32, 8940–8951 (2012). doi:10.1523/JNEUROSCI.0026-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mattson, M.P., Gleichmann, M., Cheng, A.: Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766 (2008). doi:10.1016/j.neuron.2008.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Demaurex, N., Scorrano, L.: Reactive oxygen species are NOXious for neurons. Nat. Neurosci. 12, 819–820 (2009). doi:10.1038/nn0709-819

    Article  CAS  PubMed  Google Scholar 

  9. Kirkinezos, I.G., Moraes, C.T.: Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol. 12, 449–457 (2001). doi:10.1006/scdb.2001.0282

    Article  CAS  PubMed  Google Scholar 

  10. Finkel, T.: Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011). doi:10.1083/jcb.201102095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Droge, W.: Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002). doi:10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  12. Kannan, K., Jain, S.K.: Oxidative stress and apoptosis. Pathophysiology 7, 153–163 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Jaiswal, M.K., et al.: Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. BMC Neurosci. 10, 64 (2009). doi:10.1186/1471-2202-10-64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hartley, D.M., Kurth, M.C., Bjerkness, L., Weiss, J.H., Choi, D.W.: Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J. Neurosci. 13, 1993–2000 (1993)

    CAS  PubMed  Google Scholar 

  15. Churn, S.B., Limbrick, D., Sombati, S., DeLorenzo, R.J.: Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons. J. Neurosci. 15, 3200–3214 (1995)

    CAS  PubMed  Google Scholar 

  16. Bano, D., Nicotera, P.: Ca2+ signals and neuronal death in brain ischemia. Stroke 38, 674–676 (2007). doi:10.1161/01.STR.0000256294.46009.29

    Article  CAS  PubMed  Google Scholar 

  17. Damiano, M., et al.: Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J. Neurochem. 96, 1349–1361 (2006). doi:10.1111/j.1471-4159.2006.03619.x

    Article  CAS  PubMed  Google Scholar 

  18. Parone, P.A., et al.: Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33, 4657–4671 (2013). doi:10.1523/JNEUROSCI.1119-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walsh, C., et al.: Modulation of calcium signalling by mitochondria. Biochim. Biophys. Acta 1787, 1374–1382 (2009). doi:10.1016/j.bbabio.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  20. Santo-Domingo, J., Demaurex, N.: Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 1797, 907–912 (2010). doi:10.1016/j.bbabio.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  21. Montero, M., et al.: Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2, 57–61 (2000). doi:10.1038/35000001

    Article  CAS  PubMed  Google Scholar 

  22. Sastre, J., Pallardo, F.V., Vina, J.: Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49, 427–435 (2000). doi:10.1080/152165400410281

    Article  CAS  PubMed  Google Scholar 

  23. Cui, H., Kong, Y., Zhang, H.: Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduction 2012, 646354 (2012). doi:10.1155/2012/646354

    Article  CAS  Google Scholar 

  24. Gomes, A.P., et al.: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013). doi:10.1016/j.cell.2013.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shigenaga, M.K., Hagen, T.M., Ames, B.N.: Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. U. S. A. 91, 10771–10778 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Breitenbach, M., et al.: Mitochondria in ageing: there is metabolism beyond the ROS. FEMS Yeast Res. (2013). doi:10.1111/1567-1364.12134

    Google Scholar 

  27. Shi, C., et al.: Effects of ageing and Alzheimer’s disease on mitochondrial function of human platelets. Exp. Gerontol. 43, 589–594 (2008). doi:10.1016/j.exger.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  28. Beal, M.F.: Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58, 495–505 (2005). doi:10.1002/ana.20624

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X., et al.: Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta (2013). doi:10.1016/j.bbadis.2013.10.015

    Google Scholar 

  30. Antony, P.M., Diederich, N.J., Kruger, R., Balling, R.: The hallmarks of Parkinson’s disease. FEBS J. 280, 5981–5993 (2013). doi:10.1111/febs.12335

    Article  CAS  PubMed  Google Scholar 

  31. Forno, L.S.: Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55, 259–272 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. Cardoso, S.M.: The mitochondrial cascade hypothesis for Parkinson’s disease. Curr. Pharm. Des. 17, 3390–3397 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Cardoso, S.M., Esteves, A.R., Arduino, D.M.: Mitochondrial metabolic control of microtubule dynamics impairs the autophagic pathway in Parkinson’s disease. Neurodegener. Dis. 10, 38–40 (2012). doi:10.1159/000332601

    Article  CAS  PubMed  Google Scholar 

  34. Langston, J.W., Ballard, P., Tetrud, J.W., Irwin, I.: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983)

    Article  CAS  PubMed  Google Scholar 

  35. Schapira, A.H., et al.: Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1, 1269 (1989)

    Article  CAS  PubMed  Google Scholar 

  36. Mann, V.M., et al.: Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115(Pt 2), 333–342 (1992)

    Article  PubMed  Google Scholar 

  37. Yoshino, H., Nakagawa-Hattori, Y., Kondo, T., Mizuno, Y.: Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J. Neural Transm.: Parkinson’s Dis. Dementia Sect. 4, 27–34 (1992)

    Article  CAS  Google Scholar 

  38. Krige, D., Carroll, M.T., Cooper, J.M., Marsden, C.D., Schapira, A.H.: Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson disease research group. Ann. Neurol. 32, 782–788 (1992). doi:10.1002/ana.410320612

    Article  CAS  PubMed  Google Scholar 

  39. Haas, R.H., et al.: Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann. Neurol. 37, 714–722 (1995). doi:10.1002/ana.410370604

    Article  CAS  PubMed  Google Scholar 

  40. Parker Jr., W.D., Boyson, S.J., Parks, J.K.: Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol. 26, 719–723 (1989). doi:10.1002/ana.410260606

    Article  PubMed  Google Scholar 

  41. Shoffner, J.M., Watts, R.L., Juncos, J.L., Torroni, A., Wallace, D.C.: Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann. Neurol. 30, 332–339 (1991). doi:10.1002/ana.410300304

    Article  CAS  PubMed  Google Scholar 

  42. Mytilineou, C., et al.: Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson’s disease. J. Neural Transm.: Parkinson’s Dis. Dementia Sect. 8, 223–228 (1994)

    Article  CAS  Google Scholar 

  43. Esteves, A.R., Arduino, D.M., Silva, D.F., Oliveira, C.R., Cardoso, S.M.: Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinson’s Dis. 2011, 693761 (2011). doi:10.4061/2011/693761

    CAS  Google Scholar 

  44. Jenner, P.: Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol. Scand. Suppl. 146, 6–13 (1993)

    CAS  PubMed  Google Scholar 

  45. Caparros-Lefebvre, D., Elbaz, A.: Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism study group. Lancet 354, 281–286 (1999)

    Article  CAS  PubMed  Google Scholar 

  46. Lannuzel, A., et al.: The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121, 287–296 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. Champy, P., et al.: Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. J. Neurochem. 88, 63–69 (2004)

    Article  CAS  PubMed  Google Scholar 

  48. King, M.P., Attardi, G.: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989)

    Article  CAS  PubMed  Google Scholar 

  49. Swerdlow, R.H., et al.: Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40, 663–671 (1996). doi:10.1002/ana.410400417

    Article  CAS  PubMed  Google Scholar 

  50. Esteves, A.R., et al.: Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion 8, 219–228 (2008). doi:10.1016/j.mito.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  51. Esteves, A.R., Arduino, D.M., Swerdlow, R.H., Oliveira, C.R., Cardoso, S.M.: Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid. Redox Signal. 11, 439–448 (2009). doi:10.1089/ARS.2008.2247

    Article  CAS  PubMed  Google Scholar 

  52. Esteves, A.R., et al.: Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J. Neurochem. 113, 674–682 (2010). doi:10.1111/j.1471-4159.2010.06631.x

    Article  CAS  PubMed  Google Scholar 

  53. Arduino, D.M., Esteves, A.R., Cardoso, S.M.: Mitochondria drive autophagy pathology via microtubule disassembly: a new hypothesis for Parkinson disease. Autophagy 9, 112–114 (2013). doi:10.4161/auto.22443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gu, M., Cooper, J.M., Taanman, J.W., Schapira, A.H.: Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann. Neurol. 44, 177–186 (1998). doi:10.1002/ana.410440207

    Article  CAS  PubMed  Google Scholar 

  55. Arduino, D.M., et al.: Mitochondrial metabolism in Parkinson’s disease impairs quality control autophagy by hampering microtubule-dependent traffic. Hum. Mol. Genet. 21, 4680–4702 (2012). doi:10.1093/hmg/dds309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reeve, A.K., Krishnan, K.J., Turnbull, D.: Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann. N. Y. Acad. Sci. 1147, 21–29 (2008). doi:10.1196/annals.1427.016

    Article  CAS  PubMed  Google Scholar 

  57. Larsson, N.G.: Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 79, 683–706 (2010). doi:10.1146/annurev-biochem-060408-093701

    Article  CAS  PubMed  Google Scholar 

  58. Park, C.B., Larsson, N.G.: Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193, 809–818 (2011). doi:10.1083/jcb.201010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ekstrand, M.I., et al.: Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc. Natl. Acad. Sci. U. S. A. 104, 1325–1330 (2007). doi:10.1073/pnas.0605208103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pickrell, A.M., Pinto, M., Hida, A., Moraes, C.T.: Striatal dysfunctions associated with mitochondrial DNA damage in dopaminergic neurons in a mouse model of Parkinson’s disease. J. Neurosci. 31, 17649–17658 (2011). doi:10.1523/JNEUROSCI.4871-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smigrodzki, R., Parks, J., Parker, W.D.: High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol. Aging 25, 1273–1281 (2004). doi:10.1016/j.neurobiolaging.2004.02.020

    Article  CAS  PubMed  Google Scholar 

  62. Kraytsberg, Y., et al.: Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38, 518–520 (2006). doi:10.1038/ng1778

    Article  CAS  PubMed  Google Scholar 

  63. Bender, A., et al.: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006). doi:10.1038/ng1769

    Article  CAS  PubMed  Google Scholar 

  64. Reeve, A.K., et al.: Nature of mitochondrial DNA deletions in substantia nigra neurons. Am. J. Hum. Genet. 82, 228–235 (2008). doi:10.1016/j.ajhg.2007.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown, T.P., Rumsby, P.C., Capleton, A.C., Rushton, L., Levy, L.S.: Pesticides and Parkinson’s disease--is there a link? Environ. Health Perspect. 114, 156–164 (2006)

    Article  PubMed  Google Scholar 

  66. Hatcher, J.M., Pennell, K.D., Miller, G.W.: Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol. Sci. 29, 322–329 (2008). doi:10.1016/j.tips.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  67. Esteves, A.R., Gozes, I., Cardoso, S.M.: The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson’s disease. Biochim. Biophys. Acta 1842, 7–21 (2014). doi:10.1016/j.bbadis.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  68. Pham, N.A., Richardson, T., Cameron, J., Chue, B., Robinson, B.H.: Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging. Microsc. Microanal. 10, 247–260 (2004). doi:10.1017/S143192760404005X

    Article  CAS  PubMed  Google Scholar 

  69. Kim-Han, J.S., Antenor-Dorsey, J.A., O’Malley, K.L.: The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J. Neurosci. 31, 7212–7221 (2011). doi:10.1523/JNEUROSCI.0711-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borland, M.K., et al.: Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol. Neurodegener. 3, 21 (2008). doi:10.1186/1750-1326-3-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lu, X., Kim-Han, J.S., Harmon, S., Sakiyama-Elbert, S.E., O’Malley, K.L.: The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol. Neurodegener. 9, 17 (2014). doi:10.1186/1750-1326-9-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ren, Y., Feng, J.: Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism. J. Neurochem. 103, 303–311 (2007). doi:10.1111/j.1471-4159.2007.04741.x

    CAS  PubMed  Google Scholar 

  73. Morfini, G., et al.: 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc. Natl. Acad. Sci. U. S. A. 104, 2442–2447 (2007). doi:10.1073/pnas.0611231104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patel, V.P., Chu, C.T.: Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson’s disease. Exp. Neurol. 257, 170–181 (2014). doi:10.1016/j.expneurol.2014.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Esteves, A.R., Arduino, D.M., Swerdlow, R.H., Oliveira, C.R., Cardoso, S.M.: Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front. Aging Neurosci. 1, 5 (2010). doi:10.3389/neuro.24.005.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Anglade, P., et al.: Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 12, 25–31 (1997)

    CAS  PubMed  Google Scholar 

  77. Chen, H., Chan, D.C.: Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet. 18, R169–R176 (2009). doi:10.1093/hmg/ddp326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arduino, D.M., Esteves, A.R., Cardoso, S.M.: Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinson’s Dis. 2011, 767230 (2011). doi:10.4061/2011/767230

    Google Scholar 

  79. Su, B., et al.: Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim. Biophys. Acta 1802, 135–142 (2010). doi:10.1016/j.bbadis.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  80. Santos, D., Cardoso, S.M.: Mitochondrial dynamics and neuronal fate in Parkinson’s disease. Mitochondrion 12, 428–437 (2012). doi:10.1016/j.mito.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  81. Santos, D., Esteves, A.R., Silva, D.F., Januario, C., Cardoso, S.M.: The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease. Mol. Neurobiol. (2014). doi:10.1007/s12035-014-8893-4

    PubMed Central  Google Scholar 

  82. Terman, A., Dalen, H., Eaton, J.W., Neuzil, J., Brunk, U.T.: Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp. Gerontol. 38, 863–876 (2003)

    Article  CAS  PubMed  Google Scholar 

  83. Vanhauwaert, R., Verstreken, P.: Flies with Parkinson’s disease. Exp. Neurol. (2015). doi:10.1016/j.expneurol.2015.02.020

    PubMed  Google Scholar 

  84. Thomas, B., Beal, M.F.: Parkinson’s disease. Hum. Mol. Genet. 16, R183–R194 (2007). doi:10.1093/hmg/ddm159

    Article  CAS  PubMed  Google Scholar 

  85. Kazlauskaite, A., Muqit, M.M.: PINK1 and Parkin - mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’s disease. FEBS J. 282, 215–223 (2015). doi:10.1111/febs.13127

    Article  CAS  PubMed  Google Scholar 

  86. Winklhofer, K.F., Haass, C.: Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta 1802, 29–44 (2010). doi:10.1016/j.bbadis.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  87. Klein, C., Westenberger, A.: Genetics of Parkinson’s disease. Cold Spring Harbor Perspect. Med. 2, a008888 (2012). doi:10.1101/cshperspect.a008888

    Article  Google Scholar 

  88. McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M., Fon, E.A.: Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014). doi:10.1002/embj.201385902

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tatsuta, T., Langer, T.: Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 27, 306–314 (2008). doi:10.1038/sj.emboj.7601972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mounsey, R.B., Teismann, P.: Mitochondrial dysfunction in Parkinson’s disease: pathogenesis and neuroprotection. Parkinson’s Dis. 2011, 617472 (2010). doi:10.4061/2011/617472

    Google Scholar 

  91. Lee, J.Y., Nagano, Y., Taylor, J.P., Lim, K.L., Yao, T.P.: Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189, 671–679 (2010). doi:10.1083/jcb.201001039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kuroda, Y., et al.: Parkin enhances mitochondrial biogenesis in proliferating cells. Hum. Mol. Genet. 15, 883–895 (2006). doi:10.1093/hmg/ddl006

    Article  CAS  PubMed  Google Scholar 

  93. Goldberg, M.S., et al.: Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635 (2003). doi:10.1074/jbc.M308947200

    Article  CAS  PubMed  Google Scholar 

  94. Vincent, A., et al.: parkin-induced defects in neurophysiology and locomotion are generated by metabolic dysfunction and not oxidative stress. Hum. Mol. Genet. 21, 1760–1769 (2012). doi:10.1093/hmg/ddr609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Valente, E.M., et al.: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004). doi:10.1126/science.1096284

    Article  CAS  PubMed  Google Scholar 

  96. Narendra, D.P., et al.: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010). doi:10.1371/journal.pbio.1000298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Jin, S.M., et al.: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942 (2010). doi:10.1083/jcb.201008084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin, S.M., Youle, R.J.: The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9, 1750–1757 (2013). doi:10.4161/auto.26122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Narendra, D., Walker, J.E., Youle, R.: Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. (2012). doi:10.1101/cshperspect.a011338

    PubMed  PubMed Central  Google Scholar 

  100. Rakovic, A., et al.: Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum. Mol. Genet. 19, 3124–3137 (2010). doi:10.1093/hmg/ddq215

    Article  CAS  PubMed  Google Scholar 

  101. Exner, N., et al.: Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418 (2007). doi:10.1523/JNEUROSCI.0719-07.2007

    Article  CAS  PubMed  Google Scholar 

  102. Morais, V.A., et al.: PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344, 203–207 (2014). doi:10.1126/science.1249161

    Article  CAS  PubMed  Google Scholar 

  103. Shi, G., et al.: Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum. Mol. Genet. 20, 1966–1974 (2011). doi:10.1093/hmg/ddr077

    Article  CAS  PubMed  Google Scholar 

  104. Bonifati, V., et al.: Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003). doi:10.1126/science.1077209

    Article  CAS  PubMed  Google Scholar 

  105. Irrcher, I., et al.: Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 19, 3734–3746 (2010). doi:10.1093/hmg/ddq288

    Article  CAS  PubMed  Google Scholar 

  106. Wang, X., et al.: Parkinson’s disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J. Neurochem. 121, 830–839 (2012). doi:10.1111/j.1471-4159.2012.07734.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krebiehl, G., et al.: Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS One 5, e9367 (2010). doi:10.1371/journal.pone.0009367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Parsanejad, M., et al.: DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress. PLoS One 9, e106601 (2014). doi:10.1371/journal.pone.0106601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Gu, L., et al.: Involvement of ERK1/2 signaling pathway in DJ-1-induced neuroprotection against oxidative stress. Biochem. Biophys. Res. Commun. 383, 469–474 (2009). doi:10.1016/j.bbrc.2009.04.037

    Article  CAS  PubMed  Google Scholar 

  110. Ewing, R.M., et al.: Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007). doi:10.1038/msb4100134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ng, C.J., et al.: Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J. Biol. Chem. 276, 44444–44449 (2001). doi:10.1074/jbc.M105660200

    Article  CAS  PubMed  Google Scholar 

  112. Klivenyi, P., Gardian, G., Calingasan, N.Y., Yang, L., Beal, M.F.: Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J. Mol. Neurosci. MN 21, 191–198 (2003)

    Article  CAS  PubMed  Google Scholar 

  113. Matthews, R.T., et al.: Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157, 142–149 (1999). doi:10.1006/exnr.1999.7049

    Article  CAS  PubMed  Google Scholar 

  114. Andres, R.H., et al.: Creatine supplementation improves dopaminergic cell survival and protects against MPP+ toxicity in an organotypic tissue culture system. Cell Transplant. 14, 537–550 (2005)

    Article  PubMed  Google Scholar 

  115. Elm, J.J., Investigators, N.N.-P.: Design innovations and baseline findings in a long-term Parkinson’s trial: the national institute of neurological disorders and stroke exploratory trials in Parkinson’s disease long-term study-1. Mov. Disord. 27, 1513–1521 (2012). doi:10.1002/mds.25175

    Article  CAS  PubMed  Google Scholar 

  116. Stevenson, D.E., Hurst, R.D.: Polyphenolic phytochemicals--just antioxidants or much more? Cell. Mol. Life Sci. 64, 2900–2916 (2007). doi:10.1007/s00018-007-7237-1

    Article  CAS  PubMed  Google Scholar 

  117. Gao, X., Cassidy, A., Schwarzschild, M.A., Rimm, E.B., Ascherio, A.: Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78, 1138–1145 (2012). doi:10.1212/WNL.0b013e31824f7fc4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Levites, Y., Weinreb, O., Maor, G., Youdim, M.B., Mandel, S.: Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem. 78, 1073–1082 (2001)

    Article  CAS  PubMed  Google Scholar 

  119. Li, S.D., Liu, Y., Yang, M.H.: Effect of Bushenhuoxue Yin on cerebral levels of nitric oxide, tumor necrosis factor-alpha and interferon-gamma in a mouse model of Parkinson disease. J. South. Med. Univ. 31, 90–92 (2011)

    Google Scholar 

  120. Plowey, E.D., Cherra 3rd, S.J., Liu, Y.J., Chu, C.T.: Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048–1056 (2008). doi:10.1111/j.1471-4159.2008.05217.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mu, X., He, G.R., Yuan, X., Li, X.X., Du, G.H.: Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacol. Biochem. Behav. 98, 286–291 (2011). doi:10.1016/j.pbb.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  122. Long, J., Gao, H., Sun, L., Liu, J., Zhao-Wilson, X.: Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Res. 12, 321–331 (2009). doi:10.1089/rej.2009.0877

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, K., Ma, Z., Wang, J., Xie, A., Xie, J.: Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells. Neuropharmacology 61, 329–335 (2011). doi:10.1016/j.neuropharm.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  124. Jin, F., Wu, Q., Lu, Y.F., Gong, Q.H., Shi, J.S.: Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur. J. Pharmacol. 600, 78–82 (2008). doi:10.1016/j.ejphar.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  125. Albani, D., et al.: The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J. Neurochem. 110, 1445–1456 (2009). doi:10.1111/j.1471-4159.2009.06228.x

    Article  CAS  PubMed  Google Scholar 

  126. Blanchet, J., et al.: Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 32, 1243–1250 (2008). doi:10.1016/j.pnpbp.2008.03.024

    Article  CAS  Google Scholar 

  127. Bhullar, K.S., Hubbard, B.P.: Lifespan and healthspan extension by resveratrol. Biochim. Biophys. Acta (2015). doi:10.1016/j.bbadis.2015.01.012

    Google Scholar 

  128. Procaccio, V., et al.: Perspectives of drug-based neuroprotection targeting mitochondria. Rev. Neurol. 170, 390–400 (2014). doi:10.1016/j.neurol.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  129. Subash, S., et al.: Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regener. Res. 9, 1557–1566 (2014). doi:10.4103/1673-5374.139483

    Article  Google Scholar 

  130. Haleagrahara, N., Siew, C.J., Ponnusamy, K.: Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J. Toxicol. Sci. 38, 25–33 (2013)

    Article  CAS  PubMed  Google Scholar 

  131. Anderson, D.W., Bradbury, K.A., Schneider, J.S.: Broad neuroprotective profile of nicotinamide in different mouse models of MPTP-induced parkinsonism. Eur. J. Neurosci. 28, 610–617 (2008). doi:10.1111/j.1460-9568.2008.06356.x

    Article  CAS  PubMed  Google Scholar 

  132. Birkmayer, J.G., Vrecko, C., Volc, D., Birkmayer, W.: Nicotinamide adenine dinucleotide (NADH)—a new therapeutic approach to Parkinson’s disease. Comparison of oral and parenteral application. Acta Neurol. Scand., Suppl. 146, 32–35 (1993)

    CAS  PubMed  Google Scholar 

  133. Lan, J., Jiang, D.H.: Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J. Neural Transm. 104, 469–481 (1997)

    Article  CAS  PubMed  Google Scholar 

  134. Ortiz, G.G., et al.: Fish oil, melatonin and vitamin E attenuates midbrain cyclooxygenase-2 activity and oxidative stress after the administration of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. Metab. Brain Dis. 28, 705–709 (2013). doi:10.1007/s11011-013-9416-0

    Article  CAS  PubMed  Google Scholar 

  135. Roghani, M., Behzadi, G.: Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res. 892, 211–217 (2001)

    Article  CAS  PubMed  Google Scholar 

  136. Testa, C.M., Sherer, T.B., Greenamyre, J.T.: Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res. Mol. Brain Res. 134, 109–118 (2005). doi:10.1016/j.molbrainres.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  137. Sharma, N., Nehru, B.: Beneficial effect of Vitamin E in rotenone induced model of pd: behavioural neurochemical and biochemical study. Exp. Neurobiol. 22, 214–223 (2013). doi:10.5607/en.2013.22.3.214

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gonzalez-Polo, R.A., et al.: Paraquat-induced apoptotic cell death in cerebellar granule cells. Brain Res. 1011, 170–176 (2004). doi:10.1016/j.brainres.2004.02.078

    Article  CAS  PubMed  Google Scholar 

  139. Pasbakhsh, P., et al.: The protective effect of vitamin E on locus coeruleus in early model of Parkinson’s disease in rat: immunoreactivity evidence. Iran. Biomed. J. 12, 217–222 (2008)

    CAS  PubMed  Google Scholar 

  140. Hsu, L.J., et al.: alpha-Synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 157, 401–410 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang, S.M., et al.: Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 59, 1161–1169 (2002)

    Article  CAS  PubMed  Google Scholar 

  142. Diverio, D., et al.: Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” Trial. Blood 92, 784–789 (1998)

    CAS  PubMed  Google Scholar 

  143. Etminan, M., Gill, S.S., Samii, A.: Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: a meta-analysis. Lancet Neurol. 4, 362–365 (2005). doi:10.1016/S1474-4422(05)70097-1

    Article  CAS  PubMed  Google Scholar 

  144. Ernster, L., Dallner, G.: Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1271, 195–204 (1995)

    Article  PubMed  Google Scholar 

  145. Beal, M.F., Matthews, R.T., Tieleman, A., Shults, C.W.: Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 783, 109–114 (1998)

    Article  CAS  PubMed  Google Scholar 

  146. Horvath, T.L., et al.: Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson’s disease. Endocrinology 144, 2757–2760 (2003). doi:10.1210/en.2003-0163

    Article  CAS  PubMed  Google Scholar 

  147. Cleren, C., et al.: Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J. Neurochem. 104, 1613–1621 (2008). doi:10.1111/j.1471-4159.2007.05097.x

    Article  CAS  PubMed  Google Scholar 

  148. Moon, Y., Lee, K.H., Park, J.H., Geum, D., Kim, K.: Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J. Neurochem. 93, 1199–1208 (2005). doi:10.1111/j.1471-4159.2005.03112.x

    Article  CAS  PubMed  Google Scholar 

  149. Muthukumaran, K., et al.: Orally delivered water soluble Coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: potential for therapeutic application in Parkinson’s disease. BMC Neurosci. 15, 21 (2014). doi:10.1186/1471-2202-15-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Parkinson Study Group QE3 Investigators, et al.: A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 71, 543–552 (2014). doi:10.1001/jamaneurol.2014.131

    Article  Google Scholar 

  151. Kossoff, E.H., Hartman, A.L.: Ketogenic diets: new advances for metabolism-based therapies. Curr. Opin. Neurol. 25, 173–178 (2012). doi:10.1097/WCO.0b013e3283515e4a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tieu, K., et al.: D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest. 112, 892–901 (2003). doi:10.1172/JCI18797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cheng, B., et al.: Ketogenic diet protects dopaminergic neurons against 6-OHDA neurotoxicity via up-regulating glutathione in a rat model of Parkinson’s disease. Brain Res. 1286, 25–31 (2009). doi:10.1016/j.brainres.2009.06.060

    Article  CAS  PubMed  Google Scholar 

  154. Gasior, M., Rogawski, M.A., Hartman, A.L.: Neuroprotective and disease-modifying effects of the ketogenic diet. Behav. Pharmacol. 17, 431–439 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Stafstrom, C.E., Rho, J.M.: The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front. Pharmacol. 3, 59 (2012). doi:10.3389/fphar.2012.00059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Camilleri, A., Vassallo, N.: The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neurosci. Ther. 20, 591–602 (2014). doi:10.1111/cns.12264

    Article  CAS  PubMed  Google Scholar 

  157. Solesio, M.E., et al.: The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim. Biophys. Acta 1832, 174–182 (2013). doi:10.1016/j.bbadis.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  158. Ghosh, A., et al.: Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radic. Biol. Med. 49, 1674–1684 (2010). doi:10.1016/j.freeradbiomed.2010.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Doughan, A.K., Dikalov, S.I.: Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid. Redox Signal. 9, 1825–1836 (2007). doi:10.1089/ars.2007.1693

    Article  CAS  PubMed  Google Scholar 

  160. Snow, B.J., et al.: A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010). doi:10.1002/mds.23148

    Article  PubMed  Google Scholar 

  161. Biasutto, L., Mattarei, A., Paradisi, C.: Synthesis and testing of novel isomeric mitochondriotropic derivatives of resveratrol and quercetin. Methods Mol. Biol. 1265, 161–179 (2015). doi:10.1007/978-1-4939-2288-8_13

    Article  CAS  PubMed  Google Scholar 

  162. Szeto, H.H.: Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J. 8, E277–E283 (2006). doi:10.1208/aapsj080232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhao, K., et al.: Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. 279, 34682–34690 (2004). doi:10.1074/jbc.M402999200

    Article  CAS  PubMed  Google Scholar 

  164. Yang, L., et al.: Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid. Redox Signal. 11, 2095–2104 (2009). doi:10.1089/ARS.2009.2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xun, Z., et al.: Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep. 2, 1137–1142 (2012). doi:10.1016/j.celrep.2012.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wipf, P., et al.: Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J. Am. Chem. Soc. 127, 12460–12461 (2005). doi:10.1021/ja053679l

    Article  CAS  PubMed  Google Scholar 

  167. Vyssokikh, M.Y., Antonenko, Y.N., Lyamzaev, K.G., Rokitskaya, T.I., Skulachev, V.P.: Methodology for use of mitochondria-targeted cations in the field of oxidative stress-related research. Methods Mol. Biol. 1265, 149–159 (2015). doi:10.1007/978-1-4939-2288-8_12

    Article  CAS  PubMed  Google Scholar 

  168. Antonenko, Y.N., et al.: Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry 73, 1273–1287 (2008)

    CAS  PubMed  Google Scholar 

  169. Anisimov, V.N., et al.: Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence. Biochemistry 73, 1329–1342 (2008)

    CAS  PubMed  Google Scholar 

  170. Marrache, S., Pathak, R.K., Dhar, S.: Formulation and optimization of mitochondria-targeted polymeric nanoparticles. Methods Mol. Biol. 1265, 103–112 (2015). doi:10.1007/978-1-4939-2288-8_8

    Article  CAS  PubMed  Google Scholar 

  171. Nehilla, B.J., Bergkvist, M., Popat, K.C., Desai, T.A.: Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int. J. Pharm. 348, 107–114 (2008). doi:10.1016/j.ijpharm.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  172. Taylor, R.W., Chinnery, P.F., Turnbull, D.M., Lightowlers, R.N.: Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat. Genet. 15, 212–215 (1997). doi:10.1038/ng0297-212

    Article  CAS  PubMed  Google Scholar 

  173. D’Souza, G.G., Rammohan, R., Cheng, S.M., Torchilin, V.P., Weissig, V.: DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J. Controlled Release 92, 189–197 (2003)

    Article  CAS  Google Scholar 

  174. Futaki, S., et al.: Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840 (2001). doi:10.1074/jbc.M007540200

    Article  CAS  PubMed  Google Scholar 

  175. Heller, A., Brockhoff, G., Goepferich, A.: Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm. 82, 1–18 (2012). doi:10.1016/j.ejpb.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  176. Yamada, Y., Harashima, H.: Targeting the mitochondrial genome via a dual function MITO-porter: evaluation of mtDNA levels and mitochondrial function. Methods Mol. Biol. 1265, 123–133 (2015). doi:10.1007/978-1-4939-2288-8_10

    Article  CAS  PubMed  Google Scholar 

  177. Chaturvedi, R.K., Beal, M.F.: PPAR: a therapeutic target in Parkinson’s disease. J. Neurochem. 106, 506–518 (2008). doi:10.1111/j.1471-4159.2008.05388.x

    Article  CAS  PubMed  Google Scholar 

  178. Zheng, B., et al.: PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2, 52ra73 (2010). doi:10.1126/scitranslmed.3001059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. McGill, J.K., Beal, M.F.: PGC-1alpha, a new therapeutic target in Huntington’s disease? Cell 127, 465–468 (2006). doi:10.1016/j.cell.2006.10.023

    Article  CAS  PubMed  Google Scholar 

  180. Bogacka, I., Xie, H., Bray, G.A., Smith, S.R.: Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54, 1392–1399 (2005)

    Article  CAS  PubMed  Google Scholar 

  181. Dello Russo, C., et al.: Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J. Biol. Chem. 278, 5828–5836 (2003). doi:10.1074/jbc.M208132200

    Article  CAS  PubMed  Google Scholar 

  182. Ghosh, S., et al.: The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Mol. Pharmacol. 71, 1695–1702 (2007). doi:10.1124/mol.106.033845

    Article  CAS  PubMed  Google Scholar 

  183. Strum, J.C., et al.: Rosiglitazone induces mitochondrial biogenesis in mouse brain. J. Alzheimer’s Dis. 11, 45–51 (2007)

    CAS  Google Scholar 

  184. Breidert, T., et al.: Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem. 82, 615–624 (2002)

    Article  CAS  PubMed  Google Scholar 

  185. Dehmer, T., Heneka, M.T., Sastre, M., Dichgans, J., Schulz, J.B.: Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J. Neurochem. 88, 494–501 (2004)

    Article  CAS  PubMed  Google Scholar 

  186. Swanson, C.R., et al.: The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J. Neuroinflammation 8, 91 (2011). doi:10.1186/1742-2094-8-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kumar, P., Kaundal, R.K., More, S., Sharma, S.S.: Beneficial effects of pioglitazone on cognitive impairment in MPTP model of Parkinson’s disease. Behav. Brain Res. 197, 398–403 (2009). doi:10.1016/j.bbr.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  188. Sadeghian, M., et al.: Full and partial peroxisome proliferation-activated receptor-gamma agonists, but not delta agonist, rescue of dopaminergic neurons in the 6-OHDA parkinsonian model is associated with inhibition of microglial activation and MMP expression. J. Neuroimmunol. 246, 69–77 (2012). doi:10.1016/j.jneuroim.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  189. Carta, A.R., Simuni, T.: Thiazolidinediones under preclinical and early clinical development for the treatment of Parkinson’s disease. Expert Opin. Invest. Drugs 24, 219–227 (2015). doi:10.1517/13543784.2015.963195

    Article  CAS  Google Scholar 

  190. Schintu, N., et al.: PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur. J. Neurosci. 29, 954–963 (2009). doi:10.1111/j.1460-9568.2009.06657.x

    Article  PubMed  Google Scholar 

  191. Schintu, N., et al.: Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox. Res. 16, 127–139 (2009). doi:10.1007/s12640-009-9061-x

    Article  CAS  PubMed  Google Scholar 

  192. Carta, A.R., et al.: Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194, 250–261 (2011). doi:10.1016/j.neuroscience.2011.07.046

    Article  CAS  PubMed  Google Scholar 

  193. Nissen, S.E., Wolski, K.: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007). doi:10.1056/NEJMoa072761

    Article  CAS  PubMed  Google Scholar 

  194. Iwashita, A., et al.: Neuroprotective efficacy of the peroxisome proliferator-activated receptor delta-selective agonists in vitro and in vivo. J. Pharmacol. Exp. Ther. 320, 1087–1096 (2007). doi:10.1124/jpet.106.115758

    Article  CAS  PubMed  Google Scholar 

  195. Kreisler, A., et al.: Lipid-lowering drugs in the MPTP mouse model of Parkinson’s disease: fenofibrate has a neuroprotective effect, whereas bezafibrate and HMG-CoA reductase inhibitors do not. Brain Res. 1135, 77–84 (2007). doi:10.1016/j.brainres.2006.12.011

    Article  CAS  PubMed  Google Scholar 

  196. de Lau, L.M., et al.: Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology 63, 1240–1244 (2004)

    Article  PubMed  Google Scholar 

  197. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., Del Tredici, K.: Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 318, 121–134 (2004)

    Article  PubMed  Google Scholar 

  198. Obeso, J.A., et al.: Missing pieces in the Parkinson’s disease puzzle. Nat. Med. 16, 653–661 (2010). doi:10.1038/nm.2165

    Article  CAS  PubMed  Google Scholar 

  199. Gopinathan, G., et al.: Lisuride in parkinsonism. Neurology 31, 371–376 (1981)

    Article  CAS  PubMed  Google Scholar 

  200. Lieberman, A.N., et al.: Lisuride combined with levodopa in advanced Parkinson disease. Neurology 31, 1466–1469 (1981)

    Article  CAS  PubMed  Google Scholar 

  201. Calne, D.B., Teychenne, P.F., Leigh, P.N., Bamji, A.N., Greenacre, J.K.: Treatment of parkinsonism with bromocriptine. Lancet 2, 1355–1356 (1974)

    Article  CAS  PubMed  Google Scholar 

  202. Thomas, B.: Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid. Redox Signal. 11, 2077–2082 (2009). doi:10.1089/ars.2009.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Savitt, J.M., Dawson, V.L., Dawson, T.M.: Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116, 1744–1754 (2006). doi:10.1172/JCI29178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by the Portuguese Foundation for Science and Technology (FCT-MCTES, Portugal) (PEst-C/SAU/LA0001/2013) and NEUROMED—SOE4/P1/E831. Silva DF and AR Esteves are supported by Postdoctoral Fellowship from FCT-MCTES, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Morais Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esteves, A.R., Silva, D.F., G-Fernandes, M., Gomes, R., Cardoso, S.M. (2016). Mitochondrial Therapeutic Approaches in Parkinson’s Disease. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_9

Download citation

Publish with us

Policies and ethics