Skip to main content

Toxin-Mediated Complex I Inhibition and Parkinson’s Disease

  • Chapter
  • First Online:
Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease

Abstract

Evidence of decreased mitochondrial complex I activity within the brain and peripheral tissues of idiopathic and familial forms of Parkinson’s disease (PD) implies an intrinsic vulnerability in the first complex of the electron transport chain (ETC). Several toxins of synthetic and natural origin have the ability to specifically inhibit complex I and reproduce parkinsonian-like features with remarkable similarity. Central to this mechanism is the selective vulnerability of the dopaminergic neurons of the substantia nigra (SN) and their axonal projections to the striatum (ST) to complex I inhibition. While no single etiological factor has been identified as the cause for the degeneration of dopamine neurons in sporadic PD, several lines of evidence suggest that loss of complex I activity is intimately related to the hallmark pathological features of the disease, including elevated levels of oxidative stress, neuroinflammation, and protein aggregation. The function of complex I and its production of reactive oxygen species following dysregulation are highlighted here, as well as the resulting neuropathology and its specific implications for the dopaminergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orr, A.L., Vargas, L., Turk, C.N., Baaten, J.E., Matzen, J.T., Dardov, V.J., et al.: Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 11, 834–839 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy, M.P.: How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L., Brand, M.D.: Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 1, 304–312 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schapira, A.H.V.: Complex I: inhibitors, inhibition and neurodegeneration. Exp. Neurol. 224, 331–335 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y., Fiskum, G., Schubert, D.: Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80, 780–787 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Berrisford, J.M., Sazanov, L.A.: Structural basis for the mechanism of respiratory complex I. J. Biol. Chem. 284, 29773–29783 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, Y., Schubert, D.R.: The specificity of neuroprotection by antioxidants. J. Biomed. Sci. 16, 98 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhu, J., King, M.S., Yu, M., Klipcan, L., Leslie, A.G.W., Hirst, J.: Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments. Proc. Natl. Acad. Sci. U. S. A. 112, 12087–12092 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vinothkumar, K.R., Zhu, J., Hirst, J.: Architecture of mammalian respiratory complex I. Nature 515, 80–84 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirst, J.: Mitochondrial complex I. Annu. Rev. Biochem. 82, 551–575 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. Sanders, L.H., Greenamyre, J.T.: Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med. 62, 111–120 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yakes, F.M., Van Houten, B.: Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. 94, 514–519 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Copeland, W.C., Longley, M.J.: Mitochondrial genome maintenance in health and disease. DNA Repair 19, 190–198 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Starkov, A.A., Fiskum, G.: Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 86, 1101–1107 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Kussmaul, L., Hirst, J.: The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. 103, 7607–7612 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirst, J., King, M.S., Pryde, K.R.: The production of reactive oxygen species by complex I. Biochem. Soc. Trans. 36, 976–980 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Treberg, J.R., Quinlan, C.L., Brand, M.D.: Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 286, 27103–27110 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brand, M.D.: The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45, 466–472 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goncalves, R.L.S., Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Brand, M.D.: Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290, 209–227 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Yao, Z., Wood, N.W.: Cell death pathways in Parkinson’s disease: role of mitochondria. Antioxid. Redox Signal. 11, 2135–2149 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Orr, A.L., Ashok, D., Sarantos, M.R., Shi, T., Hughes, R.E., Brand, M.D.: Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radic. Biol. Med. 65, 1047–1059 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pryde, K.R., Hirst, J.: Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J. Biol. Chem. 286, 18056–18065 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cannon, J.R., Greenamyre, J.T.: Gene–environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol. Dis. 57, 38–46 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Ryan, B.J., Hoek, S., Fon, E.A., Wade-Martins, R.: Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem. Sci. 40, 200–210 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. Mink, J.W., Blumenschine, R.J., Adams, D.B.: Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. 241, R203–R212 (1981)

    CAS  PubMed  Google Scholar 

  26. Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H., Braak, E.: Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003)

    Article  PubMed  Google Scholar 

  27. Bronstein, J.M., Paul, K., Yang, L., Haas, R.H., Shults, C.W., Le, T., et al.: Platelet mitochondrial activity and pesticide exposure in early Parkinson’s disease. Mov. Disord. 30, 862–866 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong-Riley, M.T.: Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 12, 94–101 (1989)

    Article  CAS  PubMed  Google Scholar 

  29. Chang, D.T.W., Honick, A.S., Reynolds, I.J.: Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci. 26, 7035–7045 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Harris, J.J., Jolivet, R., Attwell, D.: Synaptic energy use and supply. Neuron 75, 762–777 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. Matsuda, W., Furuta, T., Nakamura, K.C., Hioki, H., Fujiyama, F., Arai, R., et al.: Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Panov, A., Dikalov, S., Shalbuyeva, N., Taylor, G., Sherer, T., Greenamyre, J.T.: Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem. 280, 42026–42035 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Sanders, L.H., Howlett, E.H., McCoy, J., Mitochondrial, G.J.T., DNA: Damage as a peripheral biomarker for mitochondrial toxin exposure in rats. Toxicol. Sci. 142, 395–402 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horowitz, M.P., Milanese, C., Di Maio, R., Hu, X., Montero, L.M., Sanders, L.H., et al.: Single-cell redox imaging demonstrates a distinctive response of dopaminergic neurons to oxidative insults. Antioxid. Redox Signal. 15, 855–871 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meredith, G.E., Rademacher, D.J.: MPTP mouse models of Parkinson’s disease: an update. J. Parkinson’s Dis. 1, 19–33 (2011)

    CAS  Google Scholar 

  36. Greenamyre, J.T., Sanders, L.H., Gasser, T.: Fruit flies, bile acids, and Parkinson disease: a mitochondrial connection? Neurology 85, 838–839 (2015)

    Article  PubMed  Google Scholar 

  37. Polymeropoulos, M.H.: Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Bozi, M., Papadimitriou, D., Antonellou, R., Moraitou, M., Maniati, M., Vassilatis, D.K., et al.: Genetic assessment of familial and early-onset Parkinson’s disease in a Greek population. Eur. J. Neurol. 21, 963–968 (2013)

    Article  PubMed  Google Scholar 

  39. Deng, H., Yuan, L.: Genetic variants and animal models in SNCA and Parkinson disease. Ageing Res. Rev. 15, 161–176 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Jellinger, K.A.: Neuropathological spectrum of synucleinopathies. Mov. Disord. 18, 2–12 (2003)

    Article  Google Scholar 

  41. Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., et al.: alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. Martin, L.J., Pan, Y., Price, A.C., Sterling, W., Copeland, N.G., Jenkins, N.A., et al.: Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Yamada, M., Iwatsubo, T., Mizuno, Y., Mochizuki, H.: Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J. Neurochem. 91, 451–461 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. Zharikov, A.D., Cannon, J.R., Tapias, V., Bai, Q., Horowitz, M.P., Shah, V., et al.: shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson’s disease model. J. Clin. Invest. 125, 2721–2735 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schlüter, O.M., Fornai, F., Alessandrí, M.G., Takamori, S., Geppert, M., Jahn, R., et al.: Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 118, 985–1002 (2003)

    Article  PubMed  CAS  Google Scholar 

  46. Dehay, B., Bourdenx, M., Gorry, P., Przedborski, S., Vila, M., Hunot, S., et al.: Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol. 14, 855–866 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. Tansey, M.G., Goldberg, M.S.: Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. Hirsch, E.C., Hunot, S.: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. Streit, W.J.: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133–139 (2002)

    Article  PubMed  Google Scholar 

  50. Polazzi, E., Monti, B.: Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog. Neurobiol. 92, 293–315 (2010)

    Article  PubMed  Google Scholar 

  51. Brown, G.C., Neher, J.J.: Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 41, 242–247 (2010)

    Article  CAS  PubMed  Google Scholar 

  52. Brown, G.C.: Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem. Soc. Trans. 35, 1119–1121 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Imam, S.Z.: Nitric oxide mediates increased susceptibility to dopaminergic damage in Nurr1 heterozygous mice. FASEB J. 19, 1441–1450 (2005)

    Article  CAS  PubMed  Google Scholar 

  54. Burguillos, M.A., Deierborg, T., Kavanagh, E., Persson, A., Hajji, N., Garcia-Quintanilla, A., et al.: Caspase signalling controls microglia activation and neurotoxicity. Nature 472, 319–324 (2015)

    Article  CAS  Google Scholar 

  55. Good, P.F., Hsu, A., Werner, P., Perl, D.P., Olanow, C.W.: Protein nitration in Parkinson’s disease. J. Neuropathol. Exp. Neurol. 57, 338–342 (1998)

    Article  CAS  PubMed  Google Scholar 

  56. Chinta, S.J., Andersen, J.K.: Nitrosylation and nitration of mitochondrial complex I in Parkinson’s disease. Free Radic. Res. 45, 53–58 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. Blanchard-Fillion, B., Souza, J.M., Friel, T., Jiang, G.C.T., Vrana, K., Sharov, V., et al.: Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J. Biol. Chem. 276, 46017–46023 (2001)

    Article  CAS  PubMed  Google Scholar 

  58. Przedborski, S., Jackson-Lewis, V., Djaldetti, R., Liberatore, G., Vila, M., Vukosavic, S., et al.: The parkinsonian toxin MPTP: action and mechanism. Restor. Neurol. Neurosci. 16, 135–142 (2000)

    CAS  PubMed  Google Scholar 

  59. Cai, Z., Fan, L.-W., Kaizaki, A., Tien, L.-T., Ma, T., Pang, Y., et al.: Neonatal systemic exposure to lipopolysaccharide enhances susceptibility of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Dev. Neurosci. 35, 155–171 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mouton, P.R., Kelley-Bell, B., Tweedie, D., Spangler, E.L., Perez, E., Carlson, O.D., et al.: The effects of age and lipopolysaccharide (LPS)-mediated peripheral inflammation on numbers of central catecholaminergic neurons. Neurobiol. Aging 33, 10 (2010)

    Google Scholar 

  61. Wang, Q., Qian, L., Chen, S.-H., Chu, C.-H., Wilson, B., Oyarzabal, E., et al.: Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models. Brain 138, 1247–1262 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang, W., Wang, T., Pei, Z., Miller, D.S., Wu, X., Block, M.L., et al.: Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542 (2005)

    Article  CAS  PubMed  Google Scholar 

  63. Schapira, A.H., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P., Marsden, C.D.: Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 54, 823–827 (1990)

    Article  CAS  PubMed  Google Scholar 

  64. Reeve, A.K., Ludtmann, M.H., Angelova, P.R., Simcox, E.M., Horrocks, M.H., Klenerman, D., et al.: Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis. 6, e1820 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu, J., Chu, C.T.: Mitochondrial dysfunction in Parkinson’s disease. J. Alzheimers Dis. 20(Suppl 2), S325–S334 (2010)

    CAS  PubMed  Google Scholar 

  66. Hauser, D.N., Hastings, T.G.: Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol. Dis. 51, 35–42 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. Degli Esposti, M., McLennan, H.: Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: relevance to ceramide-induced apoptosis. FEBS Lett. 430, 338–342 (1998)

    Article  CAS  PubMed  Google Scholar 

  68. Lightowlers, R.N., Taylor, R.W., Turnbull, D.M.: Mutations causing mitochondrial disease: what is new and what challenges remain? Science 349, 1494–1499 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Parker Jr., W.D., Parks, J.K., Swerdlow, R.H.: Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res. 1189, 215–218 (2008)

    Article  CAS  PubMed  Google Scholar 

  70. Schapira, A.H., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B., Marsden, C.D.: Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1, 1269 (1989)

    Article  CAS  PubMed  Google Scholar 

  71. Lestienne, P., Nelson, J., Riederer, P., Jellinger, K., Reichmann, H.: Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J. Neurochem. 55, 1810–1812 (1990)

    Article  CAS  PubMed  Google Scholar 

  72. Schapira, A.H., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., et al.: Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem. 55, 2142–2145 (1990)

    Article  CAS  PubMed  Google Scholar 

  73. Hattori, N., Tanaka, M., Ozawa, T., Mizuno, Y.: Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann. Neurol. 30, 563–571 (1991)

    Article  CAS  PubMed  Google Scholar 

  74. Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., et al.: Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Commun. 163, 1450–1455 (1989)

    Article  CAS  PubMed  Google Scholar 

  75. Arthur, C.R., Morton, S.L., Dunham, L.D., Keeney, P.M., Bennett, J.P.: Parkinson’s disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance. Mol. Neurodegener. 4, 37 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Keeney, P.M.: Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J. Neurosci. 26, 5256–5264 (2006)

    Article  CAS  PubMed  Google Scholar 

  77. Davey, G.P., Peuchen, S., Clark, J.B.: Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J. Biol. Chem. 273, 12753–12757 (1998)

    Article  CAS  PubMed  Google Scholar 

  78. Parker, W.D., Boyson, S.J., Parks, J.K.: Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol. 26, 719–723 (1989)

    Article  PubMed  Google Scholar 

  79. Krige, D., Carroll, M.T., Cooper, J.M., Marsden, C.D., Schapira, A.H.: Platelet mitochondrial function in Parkinson’s disease. The royal kings and queens Parkinson disease research group. Ann. Neurol. 32, 782–788 (1992)

    Article  CAS  PubMed  Google Scholar 

  80. Yoshino, H., Nakagawa-Hattori, Y., Kondo, T., Mizuno, Y.: Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 4, 27–34 (1992)

    Article  CAS  PubMed  Google Scholar 

  81. Haas, R.H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R., et al.: Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann. Neurol. 37, 714–722 (1995)

    Article  CAS  PubMed  Google Scholar 

  82. Bindoff, L.A., Birch-Machin, M.A., Cartlidge, N.E., Parker, W.D., Turnbull, D.M.: Respiratory chain abnormalities in skeletal muscle from patients with Parkinson’s disease. J. Neurol. Sci. 104, 203–208 (1991)

    Article  CAS  PubMed  Google Scholar 

  83. Blin, O., Desnuelle, C., Rascol, O., Borg, M., Peyro Saint Paul, H., Azulay, J.P., et al.: Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J. Neurol. Sci. 125, 95–101 (1994)

    Article  CAS  PubMed  Google Scholar 

  84. Lücking, C.B., Dürr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., et al.: Association between early-onset Parkinson’s disease and mutations in the parkin gene. N. Engl. J. Med. 342, 1560–1567 (2000)

    Article  PubMed  Google Scholar 

  85. Mortiboys, H., Thomas, K.J., Koopman, W.J.H., Klaffke, S., Abou-Sleiman, P., Olpin, S., et al.: Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann. Neurol. 64, 555–565 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mortiboys, H., Aasly, J., Bandmann, O.: Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 136, 3038–3050 (2013)

    Article  PubMed  Google Scholar 

  87. Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., et al.: Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim. Biophys. Acta 2014, 902–915 (1842)

    Google Scholar 

  88. Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M.K., Harvey, K., Gispert, S., et al.: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004)

    Article  CAS  PubMed  Google Scholar 

  89. Hoepken, H.-H., Gispert, S., Morales, B., Wingerter, O., Del Turco, D., Mülsch, A., et al.: Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis. 25, 401–411 (2007)

    Article  CAS  PubMed  Google Scholar 

  90. Piccoli, C., Sardanelli, A., Scrima, R., Ripoli, M., Quarato, G., D’Aprile, A., et al.: Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem. Res. 33, 2565–2574 (2008)

    Article  CAS  PubMed  Google Scholar 

  91. Mak, S.K., Tewari, D., Tetrud, J.W., Langston, J.W., Schüle, B.: Mitochondrial dysfunction in skin fibroblasts from a Parkinson’s disease patient with an alpha-synuclein triplication. J. Parkinson’s Dis. 1, 175–183 (2011)

    CAS  Google Scholar 

  92. Mortiboys, H., Furmston, R., Bronstad, G., Aasly, J., Elliott, C., Bandmann, O.: UDCA exerts beneficial effect on mitochondrial dysfunction in LRRK2(G2019S) carriers and in vivo. Neurology 85, 846–852 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Langston, J.W., Ballard, P., Tetrud, J.W., Irwin, I.: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983)

    Article  CAS  PubMed  Google Scholar 

  94. Porras, G., Li, Q., Bezard, E.: Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harbor Perspect. Med. 2, a009308 (2012)

    Article  CAS  Google Scholar 

  95. Przedborski, S., Jackson-Lewis, V.: Mechanisms of MPTP toxicity. Mov. Disord. 13(Suppl 1), 35–38 (1998)

    PubMed  Google Scholar 

  96. Sedelis, M., Schwarting, R.K.W., Huston, J.P.: Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav. Brain Res. 125, 109–125 (2001)

    Article  CAS  PubMed  Google Scholar 

  97. LaVoie, M.J., Hastings, T.G.: Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J. Neurochem. 73, 2546–2554 (1999)

    Article  CAS  PubMed  Google Scholar 

  98. Mandavilli, B.S., Ali, S.F., Van Houten, B.: DNA damage in brain mitochondria caused by aging and MPTP treatment. Brain Res. 885, 45–52 (2000)

    Article  CAS  PubMed  Google Scholar 

  99. Hegde, M.L., Gupta, V.B., Anitha, M., Harikrishna, T., Shankar, S.K., Muthane, U., et al.: Studies on genomic DNA topology and stability in brain regions of Parkinson’s disease. Arch. Biochem. Biophys. 449, 143–156 (2006)

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, J., Perry, G., Smith, M.A., Robertson, D., Olson, S.J., Graham, D.G., et al.: Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol. 154, 1423–1429 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yokoyama, H., Uchida, H., Kuroiwa, H., Kasahara, J., Araki, T.: Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease. Neurol. Sci. 32, 1–7 (2010)

    Article  PubMed  Google Scholar 

  102. Członkowska, A., Kohutnicka, M., Kurkowska-Jastrzebska, I., Członkowski, A.: Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5, 137–143 (1996)

    Article  PubMed  Google Scholar 

  103. Yasuda, Y., Shimoda, T., Uno, K., Tateishi, N., Furuya, S., Yagi, K., et al.: The effects of MPTP on the activation of microglia/astrocytes and cytokine/chemokine levels in different mice strains. J. Neuroimmunol. 204, 43–51 (2008)

    Article  CAS  PubMed  Google Scholar 

  104. Meredith, G.E., Totterdell, S., Potashkin, J.A., Surmeier, D.J.: Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat. Disord. 14, S112–S115 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  105. Muñoz-Manchado, A.B., Villadiego, J., Romo-Madero, S., Suárez-Luna, N., Bermejo-Navas, A., Rodríguez-Gómez, J.A., et al.: Chronic and progressive Parkinson’s disease MPTP model in adult and aged mice. J. Neurochem. 136, 373–387 (2015)

    Article  PubMed  CAS  Google Scholar 

  106. De Miranda, B.R., Popichak, K.A., Hammond, S.L., Miller, J.A., Safe, S., Tjalkens, R.B.: Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson’s disease. Toxicol. Sci. 143, 360–373 (2015)

    Article  PubMed  CAS  Google Scholar 

  107. Zhang, F., Liu, J., Shi, J.-S.: Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur. J. Pharmacol. 636, 1–7 (2010)

    Article  CAS  PubMed  Google Scholar 

  108. Dehmer, T., Heneka, M.T., Sastre, M., Dichgans, J., Schulz, J.B.: Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J. Neurochem. 88, 494–501 (2004)

    Article  CAS  PubMed  Google Scholar 

  109. Carta, A.R., Frau, L., Pisanu, A., Wardas, J., Spiga, S., Carboni, E.: Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194, 250–261 (2011)

    Article  CAS  PubMed  Google Scholar 

  110. Aznavour, N., Cendres-Bozzi, C., Lemoine, L., Buda, C., Sastre, J.-P., Mincheva, Z., et al.: MPTP animal model of parkinsonism: dopamine cell death or only tyrosine hydroxylase impairment?—a study using PET imaging, autoradiography, and immunohistochemistry in the cat. CNS Neurosci. Ther. 18, 934–941 (2012)

    Article  PubMed  Google Scholar 

  111. Blesa, J., Phani, S., Jackson-Lewis, V., Przedborski, S.: Classic and new animal models of Parkinson’s disease. J. Biomed. Biotechnol. 2012, 1–10 (2012)

    Article  CAS  Google Scholar 

  112. Lambert, N., Trouslot, M.-F., Nef-Campa, C., Chrestin, H.: Production of rotenoids by heterotrophic and photomixotrophic cell cultures of tephrosia vogelii. Phytochemistry 34, 1515–1520 (1993)

    Article  CAS  Google Scholar 

  113. Höllerhage, M., Matusch, A., Champy, P., Lombès, A., Ruberg, M., Oertel, W.H., et al.: Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp. Neurol. 220, 133–142 (2009)

    Article  PubMed  CAS  Google Scholar 

  114. Grivennikova, V.G., Maklashina, E.O., Gavrikova, E.V., Vinogradov, A.D.: Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. Biochim. Biophys. Acta 1319, 223–232 (1997)

    Article  CAS  PubMed  Google Scholar 

  115. Mitochondrial, L.N., Complex, I.: Inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2002)

    Google Scholar 

  116. Fukami, J.I., Yamamoto, I., Casida, J.E.: Metabolism of rotenone in vitro by tissue homogenates from mammals and insects. Science 155, 713–716 (1967)

    Article  CAS  PubMed  Google Scholar 

  117. Cannon, J.R., Tapias, V., Na, H.M., Honick, A.S., Drolet, R.E., Greenamyre, J.T.: A highly reproducible rotenone model of Parkinson’s disease. Neurobiol. Dis. 34, 279–290 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., Greenamyre, J.T.: Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306 (2000)

    Article  CAS  PubMed  Google Scholar 

  119. Sherer, T.B., Betarbet, R., Testa, C.M., Seo, B.B., Richardson, J.R., Kim, J.-H., et al.: Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. 23, 10756–10764 (2003)

    CAS  PubMed  Google Scholar 

  120. Testa, C.M., Sherer, T.B., Greenamyre, J.T.: Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Mol. Brain Res. 134, 109–118 (2005)

    Article  CAS  PubMed  Google Scholar 

  121. Sanders, L.H., McCoy, J., Hu, X., Mastroberardino, P.G., Dickinson, B.C., Chang, C.J., et al.: Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol. Dis. 70, 214–223 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jekabsons, M.B., Nicholls, D.G.: In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J. Biol. Chem. 279, 32989–33000 (2004)

    Article  CAS  PubMed  Google Scholar 

  123. Nicholls, D.G.: Oxidative stress and energy crises in neuronal dysfunction. Ann. N. Y. Acad. Sci. 1147, 53–60 (2008)

    Article  CAS  PubMed  Google Scholar 

  124. Brocard, J.B., Tassetto, M., Reynolds, I.J.: Quantitative evaluation of mitochondrial calcium content in rat cortical neurones following a glutamate stimulus. J. Physiol. Lond. 531, 793–805 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Su, B., Wang, X., Zheng, L., Perry, G., Smith, M.A., Zhu, X.: Abnormal mitochondrial dynamics and neurodegenerative diseases. BBA, Mol. Basis Dis. 2010, 135–142 (1802)

    Google Scholar 

  126. Costa, C., Belcastro, V., Tozzi, A., Di Filippo, M., Tantucci, M., Siliquini, S., et al.: Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J. Neurosci. 28, 8040–8052 (2008)

    Article  CAS  PubMed  Google Scholar 

  127. Gao, F., Chen, D., Hu, Q., Wang, G.: Rotenone directly induces BV2 cell activation via the p38 MAPK pathway. PLoS One 8, e72046 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Emmrich, J.V., Hornik, T.C., Neher, J.J., Brown, G.C.: Rotenone induces neuronal death by microglial phagocytosis of neurons. FEBS J. 280, 5030–5038 (2013)

    Article  CAS  PubMed  Google Scholar 

  129. Yuan, Y.-H., Sun, J.-D., Wu, M.-M., Hu, J.-F., Peng, S.-Y., Chen, N.-H.: Rotenone could activate microglia through NFkB associated pathway. Neurochem. Res. 38, 1553–1560 (2013)

    Article  CAS  PubMed  Google Scholar 

  130. Gao, H.-M., Hong, J.-S., Zhang, W., Liu, B.: Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 22, 782–790 (2002)

    CAS  PubMed  Google Scholar 

  131. Betarbet, R., Canet-Aviles, R.M., Sherer, T.B., Mastroberardino, P.G., McLendon, C., Kim, J.-H., et al.: Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiol. Dis. 22, 404–420 (2006)

    Article  CAS  PubMed  Google Scholar 

  132. Lu, L., Gu, L., Liang, Y., Sun, X., Duan, C., Yang, H.: Dual effects of alpha-synuclein on neurotoxicity induced by low dosage of rotenone are dependent on exposure time in dopaminergic neuroblastoma cells. Sci. China: Life Sci. 53, 590–597 (2010)

    Article  CAS  Google Scholar 

  133. Sherer, T.B., Betarbet, R., Stout, A.K., Lund, S., Baptista, M., Panov, A.V., et al.: An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22, 7006–7015 (2002)

    CAS  PubMed  Google Scholar 

  134. Chavarría, C., Souza, J.M.: Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch. Biochem. Biophys. 533, 25–32 (2013)

    Google Scholar 

  135. Follmer, C., Coelho-Cerqueira, E., Yatabe-Franco, D.Y., Araujo, G.D.T., Pinheiro, A.S., Domont, G.B., et al.: Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of alpha-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J. Biol. Chem. 290, 27660–27679 (2015)

    CAS  PubMed  Google Scholar 

  136. Benmoyal-Segal, L., et al.: Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson’s disease. FASEB J. 19, 452–454 (2005)

    CAS  PubMed  Google Scholar 

  137. Tanner, C.M., Kamel, F., Ross, G.W., Hoppin, J.A., Goldman, S.M., Korell, M., et al.: Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 119, 866–872 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Baltazar, M.T., Dinis-Oliveira, R.J., de Lourdes, B.M., Tsatsakis, A.M., Duarte, J.A., Carvalho, F.: Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases—a mechanistic approach. Toxicol. Lett. 230, 85–103 (2014)

    Article  CAS  PubMed  Google Scholar 

  139. Ascherio, A., Chen, H., Weisskopf, M.G., O’Reilly, E., McCullough, M.L., Calle, E.E., et al.: Pesticide exposure and risk for Parkinson’s disease. Ann. Neurol. 60, 197–203 (2006)

    Article  CAS  PubMed  Google Scholar 

  140. Lefebvre, D.C., Sergeant, N., Lees, A., Camuzat, A., Daniel, S., Lannuzel, A., et al.: Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 125, 801–811 (2002)

    Article  Google Scholar 

  141. Caparros-Lefebvre, D., Elbaz, A.: Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean parkinsonism study group. Lancet 354, 281–286 (1999)

    Article  CAS  PubMed  Google Scholar 

  142. Bermejo, A., Figadere, B., Zafra-Polo, M.-C., Barrachina, I., Estornell, E., Cortes, D.: Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat. Prod. Rep. 22, 269–303 (2005)

    Article  CAS  PubMed  Google Scholar 

  143. Champy, P., Höglinger, G.U., Féger, J., Gleye, C., Hocquemiller, R., Laurens, A., et al.: Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. J. Neurochem. 88, 63–69 (2004)

    Article  CAS  PubMed  Google Scholar 

  144. Escobar-Khondiker, M., Höllerhage, M., Muriel, M.-P., Champy, P., Bach, A., Depienne, C., et al.: Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J. Neurosci. 27, 7827–7837 (2007)

    Article  CAS  PubMed  Google Scholar 

  145. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D.: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997)

    Article  CAS  PubMed  Google Scholar 

  146. Satoh, T., Miyoshi, H., Sakamoto, K., Iwamura, H.: Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. Biochim. Biophys. Acta 1273, 21–30 (1996)

    Article  PubMed  Google Scholar 

  147. Kubota, N.K., Ohta, E., Ohta, S., Koizumi, F., Suzuki, M., Ichimura, M., et al.: Piericidins C5 and C6: new 4-pyridinol compounds produced by Streptomyces sp. and Nocardioides sp. Bioorg. Med. Chem. 11, 4569–4575 (2003)

    Article  CAS  PubMed  Google Scholar 

  148. Degli Esposti, M., Ghelli, A., Crimi, M., Estornell, E., Fato, R., Lenaz, G.: Complex I and complex III of mitochondria have common inhibitors acting as ubiquinone antagonists. Biochem. Biophys. Res. Commun. 190, 1090–1096 (1993)

    Article  CAS  PubMed  Google Scholar 

  149. Lambert, A.J., Brand, M.D.: Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 279, 39414–39420 (2004)

    Article  CAS  PubMed  Google Scholar 

  150. Lock, E.A., Zhang, J., Checkoway, H.: Solvents and Parkinson disease: a systematic review of toxicological and epidemiological evidence. Toxicol. Appl. Pharmacol. 266, 345–355 (2013)

    Article  CAS  PubMed  Google Scholar 

  151. Gash, D.M., Rutland, K., Hudson, N.L., Sullivan, P.G., Bing, G., Cass, W.A., et al.: Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann. Neurol. 63, 184–192 (2008)

    Article  PubMed  Google Scholar 

  152. Liu, M., Choi, D.-Y., Hunter, R.L., Pandya, J.D., Cass, W.A., Sullivan, P.G., et al.: Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats. J. Neurochem. 112, 773–783 (2010)

    Article  CAS  PubMed  Google Scholar 

  153. Bringmann, G., God, R., Feineis, D., Janetzky, B., Reichmann, H.: TaClo as a neurotoxic lead: improved synthesis, stereochemical analysis, and inhibition of the mitochondrial respiratory chain. J. Neural Transm. Suppl. 46, 245–254 (1995)

    CAS  PubMed  Google Scholar 

  154. Bringmann, G., Feineis, D., God, R., Peters, K., Peters, E.-M., Scholz, J., et al.: 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) and related derivatives: chemistry and biochemical effects on catecholamine biosynthesis. Bioorg. Med. Chem. 10, 2207–2214 (2002)

    Article  CAS  PubMed  Google Scholar 

  155. Sontag, K.H., Heim, C., Sontag, T.A., God, R., Reichmann, H., Wesemann, W., et al.: Long-term behavioural effects of TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline) after subchronic treatment in rats. J. Neural Transm. Suppl. 46, 283–289 (1995)

    CAS  PubMed  Google Scholar 

  156. Bakke, B., Stewart, P.A., Waters, M.A.: Uses of and exposure to trichloroethylene in U.S. Industry: a systematic literature review. J. Occup. Environ. Hyg. 4, 375–390 (2007)

    Article  CAS  PubMed  Google Scholar 

  157. Goldman, S.M., Quinlan, P.J., Ross, G.W., Marras, C., Meng, C., Bhudhikanok, G.S., et al.: Solvent exposures and Parkinson disease risk in twins. Ann. Neurol. 71, 776–784 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Houten, B.V., Hunter, S.E., Meyer, J.N.: Mitochondrial DNA damage induced autophagy, cell death, and disease. Front. Biosci., Landmark Ed. 21, 42–54 (2016)

    Article  Google Scholar 

  159. Tanner, C.M., Goldman, S.M., Ross, G.W., Grate, S.J.: The disease intersection of susceptibility and exposure: chemical exposures and neurodegenerative disease risk. Alzheimers Dement. 10, S213–S225 (2014)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H. Sanders Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Miranda, B.R., Van Houten, B., Sanders, L.H. (2016). Toxin-Mediated Complex I Inhibition and Parkinson’s Disease. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_6

Download citation

Publish with us

Policies and ethics