Skip to main content

Transcription Modulation of Mitochondrial Function and Related Pathways as a Therapeutic Opportunity in Parkinson’s Disease

  • Chapter
  • First Online:
Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease

Abstract

As outlined in prior chapters, the etiology of Parkinson’s disease (PD) is complex, involving both genetic and environmental factors, necessitating the development of multiple models to study PD. Mounting evidence has established that α-synuclein plays a central role in PD pathogenesis (Brain Pathology 9:707–720, 1999). In α-synucleinopathies, toxic oligomeric forms of α-synuclein may target intracellular organelles and cellular pathways, including mitochondria, the ubiquitin–proteasome system, and the autophagy–lysosome pathway, leading to neuron dysfunction and cell death. In addition, mitochondrial toxins have been identified in epidemiological studies as contributing to “sporadic” PD, and following the discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, mitochondrial-based toxin models (paraquat, maneb, rotenone) were developed (Science 219:979–980, 1983; Cell 155:1351–1364, 2013). Mitochondrial dysfunction is thus a common pathological hallmark of PD and may contribute to disease pathogenesis along with altered mitochondrial turnover or reduced mitochondrial biogenesis. Thus, regulators of mitochondrial function are appealing targets for therapeutic strategies to halt or reverse PD neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hashimoto, M., Masliah, E.: Alpha-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol. 9, 707–720 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Langston, J.W., Ballard, P., Tetrud, J.W., Irwin, I.: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983)

    Article  CAS  PubMed  Google Scholar 

  3. Ryan, S.D., et al.: Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell 155, 1351–1364 (2013). doi:10.1016/j.cell.2013.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burns, R.S., LeWitt, P.A., Ebert, M.H., Pakkenberg, H., Kopin, I.J.: The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med. 312, 1418–1421 (1985). doi:10.1056/nejm198505303122203

    Article  CAS  PubMed  Google Scholar 

  5. Chaturvedi, R.K., Beal, M.F.: Mitochondrial approaches for neuroprotection. Ann. N. Y. Acad. Sci. 1147, 395–412 (2008). doi:10.1196/annals.1427.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Panov, A., et al.: Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem. 280, 42026–42035 (2005). doi:10.1074/jbc.M508628200

    Article  CAS  PubMed  Google Scholar 

  7. Borland, M.K., et al.: Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol. Neurodegener. 3, 21 (2008). doi:10.1186/1750-1326-3-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lin, M.T., Beal, M.F.: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006). doi:10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  9. Beal, M.F.: Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58, 495–505 (2005). doi:10.1002/ana.20624

    Article  CAS  PubMed  Google Scholar 

  10. Trimmer, P.A., Bennett Jr., J.P.: The cybrid model of sporadic Parkinson’s disease. Exp. Neurol. 218, 320–325 (2009). doi:10.1016/j.expneurol.2009.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moore, D.J., et al.: Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum. Mol. Genet. 14, 71–84 (2005). doi:10.1093/hmg/ddi007

    Article  CAS  PubMed  Google Scholar 

  12. Schapira, A.H., et al.: Lancet 1, 1269 (1989)

    Article  CAS  PubMed  Google Scholar 

  13. Swerdlow, R.H., et al.: Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40, 663–671 (2016). doi:10.1002/ana.410400417

    Article  Google Scholar 

  14. Gu, M., Cooper, J.M., Taanman, J.W., Schapira, A.H.: Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann. Neurol. 44, 177–186 (1998). doi:10.1002/ana.410440207

    Article  CAS  PubMed  Google Scholar 

  15. Keeney, P.M., et al.: Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Hum. Gene Ther. 20, 897–907 (2009). doi:10.1089/hum.2009.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hock, M.B., Kralli, A.: Transcriptional control of mitochondrial biogenesis and function. Annu. Rev. Physiol. 71, 177–203 (2009). doi:10.1146/annurev.physiol.010908.163119

    Article  CAS  PubMed  Google Scholar 

  17. Tsunemi, T., La Spada, A.R.: PGC-1alpha at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond. Prog. Neurobiol. 97, 142–151 (2012). doi:10.1016/j.pneurobio.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  18. Esterbauer, H., Oberkofler, H., Krempler, F., Patsch, W.: Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62, 98–102 (1999). doi:10.1006/geno.1999.5977

    Article  CAS  PubMed  Google Scholar 

  19. Puigserver, P., et al.: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. St-Pierre, J., et al.: Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397–408 (2006). doi:10.1016/j.cell.2006.09.024

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Z., et al.: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999). doi:10.1016/s0092-8674(00)80611-x

    Article  CAS  PubMed  Google Scholar 

  22. Puigserver, P., Spiegelman, B.M.: Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78–90 (2003). doi:10.1210/er.2002-0012

    Article  CAS  PubMed  Google Scholar 

  23. Shin, J.H., et al.: PARIS (ZNF746) Repression of PGC-1alpha Contributes to Neurodegeneration in Parkinson’s Disease. Cell 144, 689–702 (2011). doi:10.1016/j.cell.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng, B., et al.: PGC-1alpha, a potential therapeutic target for early intervention in Parkinson’s disease. Sci. Transl. Med. 2, 52ra73 (2010). doi:10.1126/scitranslmed.3001059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Esteves, A.R., et al.: Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J. Neurochem. 113, 674–682 (2010). doi:10.1111/j.1471-4159.2010.06631.x

    Article  CAS  PubMed  Google Scholar 

  26. McGill, J.K., Beal, M.F.: PGC-1alpha, a new therapeutic target in Huntington’s disease? Cell 127, 465–468 (2006). doi:10.1016/j.cell.2006.10.023

    Article  CAS  PubMed  Google Scholar 

  27. Mudo, G., et al.: Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell. Mol. Life Sci. 69, 1153–1165 (2012). doi:10.1007/s00018-011-0850-z

    Article  CAS  PubMed  Google Scholar 

  28. Ebrahim, A.S., Ko, L.W., Yen, S.H.: Reduced expression of peroxisome-proliferator activated receptor gamma coactivator-1alpha enhances alpha-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express alpha-synuclein. Neurosci. Lett. 473, 120–125 (2010). doi:10.1016/j.neulet.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seibler, P., et al.: Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 31, 5970–5976 (2011). doi:10.1523/jneurosci.4441-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ciron, C., Lengacher, S., Dusonchet, J., Aebischer, P., Schneider, B.L.: Sustained expression of PGC-1alpha in the rat nigrostriatal system selectively impairs dopaminergic function. Hum. Mol. Genet. 21, 1861–1876 (2012). doi:10.1093/hmg/ddr618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clark, J., et al.: Pgc-1alpha overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One 7, e48925 (2012). doi:10.1371/journal.pone.0048925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pacelli, C., et al.: Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol. 25, 2349–2360 (2015). doi:10.1016/j.cub.2015.07.050

    Article  CAS  PubMed  Google Scholar 

  33. Dumont, M., et al.: PGC-1alpha overexpression exacerbates beta-amyloid and tau deposition in a transgenic mouse model of Alzheimer’s disease. FASEB J. 28, 1745–1755 (2014). doi:10.1096/fj.13-236331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindholm, D., Eriksson, O., Makela, J., Belluardo, N., Korhonen, L.: PGC-1alpha: a master gene that is hard to master. Cell. Mol. Life Sci. 69, 2465–2468 (2012). doi:10.1007/s00018-012-1043-0

    Article  CAS  PubMed  Google Scholar 

  35. Berger, J., Moller, D.E.: The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. Michalik, L., et al.: International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 58, 726–741 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Delerive, P., Fruchart, J.C., Staels, B.: Peroxisome proliferator-activated receptors in inflammation control. J. Endocrinol. 169, 453–459 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. Desvergne, B., Wahli, W.: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999). doi:10.1210/edrv.20.5.0380

    CAS  PubMed  Google Scholar 

  39. Evans, R.M., Barish, G.D., Wang, Y.X.: PPARs and the complex journey to obesity. Nat. Med. 10, 355–361 (2004). doi:10.1038/nm1025

    Article  CAS  PubMed  Google Scholar 

  40. van Neerven, S., Kampmann, E., Mey, J.: RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog. Neurobiol. 85, 433–451 (2008). doi:10.1016/j.pneurobio.2008.04.006

    Article  PubMed  CAS  Google Scholar 

  41. Qi, C., Zhu, Y., Reddy, J.K.: Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem. Biophys. 32(Spring), 187–204 (2000)

    Article  CAS  PubMed  Google Scholar 

  42. Pascual, G., et al.: A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759–763 (2005). doi:10.1038/nature03988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diradourian, C., Girard, J., Pegorier, J.P.: Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 87, 33–38 (2005). doi:10.1016/j.biochi.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  44. Adams, M., Reginato, M.J., Shao, D., Lazar, M.A., Chatterjee, V.K.: Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J. Biol. Chem. 272, 5128–5132 (1997)

    Article  CAS  PubMed  Google Scholar 

  45. Shao, D., et al.: Interdomain communication regulating ligand binding by PPAR-gamma. Nature 396, 377–380 (1998). doi:10.1038/24634

    Article  CAS  PubMed  Google Scholar 

  46. Camp, H.S., Tafuri, S.R., Leff, T.: c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology 140, 392–397 (1999). doi:10.1210/endo.140.1.6457

    CAS  PubMed  Google Scholar 

  47. Hu, E., Kim, J.B., Sarraf, P., Spiegelman, B.M.: Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274, 2100–2103 (1996)

    Article  CAS  PubMed  Google Scholar 

  48. Hauser, S., et al.: Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation. J. Biol. Chem. 275, 18527–18533 (2000). doi:10.1074/jbc.M001297200

    Article  CAS  PubMed  Google Scholar 

  49. Yamashita, D., et al.: The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells 9, 1017–1029 (2004). doi:10.1111/j.1365-2443.2004.00786.x

    Article  CAS  PubMed  Google Scholar 

  50. Abbott, B.D.: Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod. Toxicol. 27, 246–257 (2009). doi:10.1016/j.reprotox.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  51. Braissant, O., Wahli, W.: Differential expression of peroxisome proliferator-activated receptor-alpha, -beta, and -gamma during rat embryonic development. Endocrinology 139, 2748–2754 (1998). doi:10.1210/endo.139.6.6049

    CAS  PubMed  Google Scholar 

  52. Michalik, L., et al.: PPAR expression and function during vertebrate development. Int. J. Dev. Biol. 46, 105–114 (2002)

    CAS  PubMed  Google Scholar 

  53. Cimini, A., Bernardo, A., Cifone, M.G., Di Marzio, L., Di Loreto, S.: TNFalpha downregulates PPARdelta expression in oligodendrocyte progenitor cells: implications for demyelinating diseases. Glia 41, 3–14 (2003). doi:10.1002/glia.10143

    Article  PubMed  Google Scholar 

  54. Saluja, I., Granneman, J.G., Skoff, R.P.: PPAR delta agonists stimulate oligodendrocyte differentiation in tissue culture. Glia 33, 191–204 (2001)

    Article  CAS  PubMed  Google Scholar 

  55. Desvergne, B., Michalik, L., Wahli, W.: Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol. Endocrinol. 18, 1321–1332 (2004). doi:10.1210/me.2004-0088

    Article  CAS  PubMed  Google Scholar 

  56. Rosen, E.D., et al.: PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999)

    Article  CAS  PubMed  Google Scholar 

  57. Bernardo, A., Minghetti, L.: Regulation of glial cell functions by PPAR-gamma natural and synthetic agonists. PPAR Res. 2008, 864140 (2008). doi:10.1155/2008/864140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cullingford, T.E., et al.: Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system. J. Neurochem. 70, 1366–1375 (1998)

    Article  CAS  PubMed  Google Scholar 

  59. Moreno, S., Farioli-Vecchioli, S., Ceru, M.P.: Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 123, 131–145 (2004)

    Article  CAS  PubMed  Google Scholar 

  60. Krey, G., et al.: Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11, 779–791 (1997). doi:10.1210/mend.11.6.0007

    Article  CAS  PubMed  Google Scholar 

  61. Bernardo, A., Minghetti, L.: PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des. 12, 93–109 (2006)

    Article  CAS  PubMed  Google Scholar 

  62. Pelton, P.: GW-501516 GlaxoSmithKline/ligand. Curr. Opin. Investig. Drugs 7, 360–370 (2006)

    CAS  PubMed  Google Scholar 

  63. Dickey, A.S., et al.: PPAR-delta is repressed in Huntington’s disease, is required for normal neuronal function and can be targeted therapeutically. Nat. Med. 22, 37–45 (2016). doi:10.1038/nm.4003

    Article  CAS  PubMed  Google Scholar 

  64. Lehmann, J.M., Lenhard, J.M., Oliver, B.B., Ringold, G.M., Kliewer, S.A.: Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410 (1997)

    Article  CAS  PubMed  Google Scholar 

  65. Willson, T.M., Lambert, M.H., Kliewer, S.A.: Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu. Rev. Biochem. 70, 341–367 (2001). doi:10.1146/annurev.biochem.70.1.341

    Article  CAS  PubMed  Google Scholar 

  66. Ahmadian, M., et al.: PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013). doi:10.1038/nm.3159

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Y.C., et al.: Peroxisome proliferator-activated receptor gamma (PPAR-gamma) and neurodegenerative disorders. Mol. Neurobiol. 46, 114–124 (2012). doi:10.1007/s12035-012-8259-8

    Article  CAS  PubMed  Google Scholar 

  68. Chiang, M.C., Chern, Y., Huang, R.N.: PPARgamma rescue of the mitochondrial dysfunction in Huntington’s disease. Neurobiol. Dis. 45, 322–328 (2012). doi:10.1016/j.nbd.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  69. Aleshin, S., Reiser, G.: Role of the peroxisome proliferator-activated receptors (PPAR)-alpha, beta/delta and gamma triad in regulation of reactive oxygen species signaling in brain. Biol. Chem. 394, 1553–1570 (2013). doi:10.1515/hsz-2013-0215

    Article  CAS  PubMed  Google Scholar 

  70. Carta, A.R., et al.: Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194, 250–261 (2011). doi:10.1016/j.neuroscience.2011.07.046

    Article  CAS  PubMed  Google Scholar 

  71. Landreth, G., Jiang, Q., Mandrekar, S., Heneka, M.: PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5, 481–489 (2008). doi:10.1016/j.nurt.2008.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nicolakakis, N., et al.: Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J. Neurosci. 28, 9287–9296 (2008). doi:10.1523/jneurosci.3348-08.2008

    Article  CAS  PubMed  Google Scholar 

  73. Collino, M., Patel, N.S., Thiemermann, C.: PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther. Adv. Cardiovasc. Dis. 2, 179–197 (2008). doi:10.1177/1753944708090924

    Article  PubMed  Google Scholar 

  74. Makela, J., et al.: Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist is neuroprotective and stimulates PGC-1alpha expression and CREB phosphorylation in human dopaminergic neurons. Neuropharmacology 102, 266–275 (2016). doi:10.1016/j.neuropharm.2015.11.020

    Article  CAS  PubMed  Google Scholar 

  75. Ulusoy, G.K., et al.: Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson’s disease. Brain Res. Bull. 85, 380–384 (2011). doi:10.1016/j.brainresbull.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  76. Corona, J.C., de Souza, S.C., Duchen, M.R.: PPARgamma activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Exp. Neurol. 253, 16–27 (2014). doi:10.1016/j.expneurol.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  77. Swanson, C.R., et al.: The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J. Neuroinflammation 8, 91 (2011). doi:10.1186/1742-2094-8-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schintu, N., et al.: PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur. J. Neurosci. 29, 954–963 (2009). doi:10.1111/j.1460-9568.2009.06657.x

    Article  PubMed  Google Scholar 

  79. Dehmer, T., Heneka, M.T., Sastre, M., Dichgans, J., Schulz, J.B.: Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J. Neurochem. 88, 494–501 (2004)

    Article  CAS  PubMed  Google Scholar 

  80. Swanson, C.R., Du, E., Johnson, D.A., Johnson, J.A., Emborg, M.E.: Neuroprotective properties of a novel non-thiazolidinedione partial PPAR-gamma agonist against MPTP. PPAR Res. 2013, 582809 (2013). doi:10.1155/2013/582809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hunter, R.L., et al.: Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J. Neurochem. 100, 1375–1386 (2007). doi:10.1111/j.1471-4159.2006.04327.x

    Article  CAS  PubMed  Google Scholar 

  82. Hunter, R.L., Choi, D.Y., Ross, S.A., Bing, G.: Protective properties afforded by pioglitazone against intrastriatal LPS in Sprague-Dawley rats. Neurosci. Lett. 432, 198–201 (2008). doi:10.1016/j.neulet.2007.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xing, B., Liu, M., Bing, G.: Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity. J. Neuroimmunol. 192, 89–98 (2007). doi:10.1016/j.jneuroim.2007.09.029

    Article  CAS  PubMed  Google Scholar 

  84. Xing, B., Xin, T., Hunter, R.L., Bing, G.: Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J. Neuroinflammation 5, 4 (2008). doi:10.1186/1742-2094-5-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Loane, D.J., et al.: Interleukin-4 mediates the neuroprotective effects of rosiglitazone in the aged brain. Neurobiol. Aging 30, 920–931 (2009). doi:10.1016/j.neurobiolaging.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  86. Depino, A.M., et al.: Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur. J. Neurosci. 18, 2731–2742 (2003)

    Article  PubMed  Google Scholar 

  87. Laloux, C., Petrault, M., Lecointe, C., Devos, D., Bordet, R.: Differential susceptibility to the PPAR-gamma agonist pioglitazone in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine rodent models of Parkinson’s disease. Pharmacol. Res. 65, 514–522 (2012). doi:10.1016/j.phrs.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Y.L., Frauwirth, K.A., Rangwala, S.M., Lazar, M.A., Thompson, C.B.: Thiazolidinedione activation of peroxisome proliferator-activated receptor gamma can enhance mitochondrial potential and promote cell survival. J. Biol. Chem. 277, 31781–31788 (2002). doi:10.1074/jbc.M204279200

    Article  CAS  PubMed  Google Scholar 

  89. Dello Russo, C., et al.: Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J. Biol. Chem. 278, 5828–5836 (2003). doi:10.1074/jbc.M208132200

    Article  CAS  PubMed  Google Scholar 

  90. Garcia-Bueno, B., Caso, J.R., Perez-Nievas, B.G., Lorenzo, P., Leza, J.C.: Effects of peroxisome proliferator-activated receptor gamma agonists on brain glucose and glutamate transporters after stress in rats. Neuropsychopharmacology 32, 1251–1260 (2007). doi:10.1038/sj.npp.1301252

    Article  CAS  PubMed  Google Scholar 

  91. Bogacka, I., Xie, H., Bray, G.A., Smith, S.R.: Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54, 1392–1399 (2005)

    Article  CAS  PubMed  Google Scholar 

  92. Ghosh, S., et al.: The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Mol. Pharmacol. 71, 1695–1702 (2007). doi:10.1124/mol.106.033845

    Article  CAS  PubMed  Google Scholar 

  93. Rong, J.X., et al.: Rosiglitazone induces mitochondrial biogenesis in differentiated murine 3T3-L1 and C3H/10T1/2 adipocytes. PPAR Res. 179454, 2011 (2011). doi:10.1155/2011/179454

    Google Scholar 

  94. Strum, J.C., et al.: Rosiglitazone induces mitochondrial biogenesis in mouse brain. J. Alzheimers Dis. 11, 45–51 (2007)

    CAS  PubMed  Google Scholar 

  95. Colca, J.R., et al.: Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am. J. Physiol. Endocrinol. Metab. 286, E252–E260 (2004). doi:10.1152/ajpendo.00424.2003

    Article  CAS  PubMed  Google Scholar 

  96. Paddock, M.L., et al.: MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc. Natl. Acad. Sci. U. S. A. 104, 14342–14347 (2007). doi:10.1073/pnas.0707189104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P., Dixon, J.E.: MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc. Natl. Acad. Sci. U. S. A. 104, 5318–5323 (2007). doi:10.1073/pnas.0701078104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rong, J.X., et al.: Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56, 1751–1760 (2007). doi:10.2337/db06-1135

    Article  CAS  PubMed  Google Scholar 

  99. Jung, T.W., et al.: Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production. J. Neurol. Sci. 253, 53–60 (2007). doi:10.1016/j.jns.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  100. Quinn, L.P., et al.: The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson’s disease through inhibition of monoamine oxidase B. Br. J. Pharmacol. 154, 226–233 (2008). doi:10.1038/bjp.2008.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Breidert, T., et al.: Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem. 82, 615–624 (2002)

    Article  CAS  PubMed  Google Scholar 

  102. Martin, H.L., Mounsey, R.B., Mustafa, S., Sathe, K., Teismann, P.: Pharmacological manipulation of peroxisome proliferator-activated receptor gamma (PPARgamma) reveals a role for anti-oxidant protection in a model of Parkinson’s disease. Exp. Neurol. 235, 528–538 (2012). doi:10.1016/j.expneurol.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Colca, J.R., et al.: Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)--relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS One 8, e61551 (2013). doi:10.1371/journal.pone.0061551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Colca, J.R., et al.: Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin. Pharmacol. Ther. 93, 352–359 (2013). doi:10.1038/clpt.2013.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Suzuki, S., et al.: Effects of pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the urine and urothelium of the rat. Toxicol. Sci. 113, 349–357 (2010). doi:10.1093/toxsci/kfp256

    Article  CAS  PubMed  Google Scholar 

  106. Ferwana, M., et al.: Pioglitazone and risk of bladder cancer: a meta-analysis of controlled studies. Diabet. Med. 30, 1026–1032 (2013). doi:10.1111/dme.12144

    Article  CAS  PubMed  Google Scholar 

  107. Consoli, A., Formoso, G.: Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes, Obes. Metab. 15, 967–977 (2013). doi:10.1111/dom.12101

    Article  CAS  Google Scholar 

  108. Azoulay, L., et al.: The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case-control study. BMJ (2012). doi:10.1136/bmj.e3645

    PubMed  PubMed Central  Google Scholar 

  109. NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators: Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 14, 795–803 (2015). doi:10.1016/S1474-4422(15)00144-1

    Article  CAS  Google Scholar 

  110. Pisanu, A., et al.: Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol. Dis. 71, 280–291 (2014). doi:10.1016/j.nbd.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  111. Nissen, S.E., Wolski, K.: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007). doi:10.1056/NEJMoa072761

    Article  CAS  PubMed  Google Scholar 

  112. Graham, J., Levick, D., Schreiber, R.: AMDIS case conference: intrusive medication safety alerts. Appl. Clin. Informat. 1, 68–78 (2010). doi:10.4338/ACI-2010-03-CR-0021

    Article  CAS  Google Scholar 

  113. Way, J.M., et al.: Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142, 1269–1277 (2001). doi:10.1210/endo.142.3.8037

    CAS  PubMed  Google Scholar 

  114. Narkar, V.A., et al.: AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405–415 (2008). doi:10.1016/j.cell.2008.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Luquet, S., et al.: Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J. 17, 2299–2301 (2003)

    CAS  PubMed  Google Scholar 

  116. Wang, Y.X., et al.: Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2, e294 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Girroir, E.E., et al.: Quantitative expression patterns of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) protein in mice. Biochem. Biophys. Res. Commun. 371, 456–461 (2008). doi:10.1016/j.bbrc.2008.04.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Higashiyama, H., Billin, A.N., Okamoto, Y., Kinoshita, M., Asano, S.: Expression profiling of Peroxisome proliferator-activated receptor-delta (PPAR-delta) in mouse tissues using tissue microarray. Histochem. Cell Biol. 127, 485–494 (2007)

    Article  CAS  PubMed  Google Scholar 

  119. Bookout, A.L., et al.: Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126, 789–799 (2006)

    Article  CAS  PubMed  Google Scholar 

  120. Schuler, M., et al.: PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4, 407–414 (2006). doi:10.1016/j.cmet.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  121. Bishop-Bailey, D., Bystrom, J.: Emerging roles of peroxisome proliferator-activated receptor-beta/delta in inflammation. Pharmacol. Ther. 124, 141–150 (2009). doi:10.1016/j.pharmthera.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  122. Niino, M., et al.: Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-gamma. J. Neuroimmunol. 116, 40–48 (2001)

    Article  CAS  PubMed  Google Scholar 

  123. Escribano, L., et al.: Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer’s disease mouse model. Biochem. Biophys. Res. Commun. 379, 406–410 (2009). doi:10.1016/j.bbrc.2008.12.071

    Article  CAS  PubMed  Google Scholar 

  124. Iwashita, A., et al.: Neuroprotective efficacy of the peroxisome proliferator-activated receptor delta-selective agonists in vitro and in vivo. J. Pharmacol. Exp. Ther. 320, 1087–1096 (2007)

    Article  CAS  PubMed  Google Scholar 

  125. Martin, H.L., et al.: A peroxisome proliferator-activated receptor-delta agonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neuroscience 240, 191–203 (2013). doi:10.1016/j.neuroscience.2013.02.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Das, N.R., Gangwal, R.P., Damre, M.V., Sangamwar, A.T., Sharma, S.S.: A PPAR-beta/delta agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson’s disease. Curr. Neurovasc. Res. 11, 114–124 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. Iwaisako, K., et al.: Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist. Proc. Natl. Acad. Sci. U. S. A. 109, E1369–E1376 (2012). doi:10.1073/pnas.1202464109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hardie, D.G.: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895–1908 (2011). doi:10.1101/gad.17420111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jager, S., Handschin, C., St-Pierre, J., Spiegelman, B.M.: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U. S. A. 104, 12017–12022 (2007). doi:10.1073/pnas.0705070104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Suwa, M., Nakano, H., Kumagai, S.: Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J. Appl. Physiol. 95, 960–968 (2003). doi:10.1152/japplphysiol.00349.2003

    Article  CAS  PubMed  Google Scholar 

  131. Terada, S., et al.: Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem. Biophys. Res. Commun. 296, 350–354 (2002)

    Article  CAS  PubMed  Google Scholar 

  132. Canto, C., et al.: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009). doi:10.1038/nature07813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dugan, L.L., et al.: AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013). doi:10.1172/jci66218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Komen, J.C., Thorburn, D.R.: Turn up the power - pharmacological activation of mitochondrial biogenesis in mouse models. Br. J. Pharmacol. 171, 1818–1836 (2014). doi:10.1111/bph.12413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kukidome, D., et al.: Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55, 120–127 (2006)

    Article  CAS  PubMed  Google Scholar 

  136. Golubitzky, A., et al.: Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS One 6, e26883 (2011). doi:10.1371/journal.pone.0026883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Russell 3rd, R.R., Bergeron, R., Shulman, G.I., Young, L.H.: Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 277, H643–H649 (1999)

    CAS  PubMed  Google Scholar 

  138. Lempiainen, J., Finckenberg, P., Levijoki, J., Mervaala, E.: AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br. J. Pharmacol. 166, 1905–1915 (2012). doi:10.1111/j.1476-5381.2012.01895.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pold, R., et al.: Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 54, 928–934 (2005)

    Article  CAS  PubMed  Google Scholar 

  140. Canto, C., Auwerx, J.: PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98–105 (2009). doi:10.1097/MOL.0b013e328328d0a4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rodgers, J.T., et al.: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118 (2005). doi:10.1038/nature03354

    Article  CAS  PubMed  Google Scholar 

  142. Revollo, J.R., Li, X.: The ways and means that fine tune Sirt1 activity. Trends Biochem. Sci. 38, 160–167 (2013). doi:10.1016/j.tibs.2012.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lagouge, M., et al.: Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006). doi:10.1016/j.cell.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  144. Cui, L., et al.: Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59–69 (2006). doi:10.1016/j.cell.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  145. Milne, J.C., et al.: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007). doi:10.1038/nature06261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pasinetti, G.M., et al.: Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp. Neurol. 232, 1–6 (2011). doi:10.1016/j.expneurol.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  147. Sun, A.Y., Wang, Q., Simonyi, A., Sun, G.Y.: Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol. 41, 375–383 (2010). doi:10.1007/s12035-010-8111-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ferretta, A., et al.: Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim. Biophys. Acta 1842, 902–915 (2014). doi:10.1016/j.bbadis.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  149. Petrovski, G., Gurusamy, N., Das, D.K.: Resveratrol in cardiovascular health and disease. Ann. N. Y. Acad. Sci. 1215, 22–33 (2011). doi:10.1111/j.1749-6632.2010.05843.x

    Article  PubMed  CAS  Google Scholar 

  150. Kanamori, H., et al.: Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am. J. Pathol. 182, 701–713 (2013). doi:10.1016/j.ajpath.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  151. Rivera, L., Moron, R., Zarzuelo, A., Galisteo, M.: Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem. Pharmacol. 77, 1053–1063 (2009). doi:10.1016/j.bcp.2008.11.027

    Article  CAS  PubMed  Google Scholar 

  152. Beaudeux, J.L., Nivet-Antoine, V., Giral, P.: Resveratrol: a relevant pharmacological approach for the treatment of metabolic syndrome? Curr. Opin. Clin. Nutr. Metab. Care 13, 729–736 (2010). doi:10.1097/MCO.0b013e32833ef291

    Article  CAS  PubMed  Google Scholar 

  153. Brasnyo, P., et al.: Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 106, 383–389 (2011). doi:10.1017/s0007114511000316

    Article  CAS  PubMed  Google Scholar 

  154. Minor, R.K., et al.: SRT1720 improves survival and healthspan of obese mice. Sci. Rep. 1, 70 (2011). doi:10.1038/srep00070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Funk, J.A., Schnellmann, R.G.: Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1alpha activation following ischemia-reperfusion injury. Toxicol. Appl. Pharmacol. 273, 345–354 (2013). doi:10.1016/j.taap.2013.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. de Boer, V.C., de Goffau, M.C., Arts, I.C., Hollman, P.C., Keijer, J.: SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech. Ageing Dev. 127, 618–627 (2006). doi:10.1016/j.mad.2006.02.007

    Article  PubMed  CAS  Google Scholar 

  157. Rasbach, K.A., Schnellmann, R.G.: Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 325, 536–543 (2008). doi:10.1124/jpet.107.134882

    Article  CAS  PubMed  Google Scholar 

  158. Haigis, M.C., Deng, C.X., Finley, L.W., Kim, H.S., Gius, D.: SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res. 72, 2468–2472 (2012). doi:10.1158/0008-5472.can-11-3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Osman, M.M., et al.: Cyclosporine-A as a neuroprotective agent against stroke: its translation from laboratory research to clinical application. Neuropeptides 45, 359–368 (2011). doi:10.1016/j.npep.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  160. Youle, R.J., Narendra, D.P.: Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011). doi:10.1038/nrm3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Morigi, M., et al.: Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715–726 (2015). doi:10.1172/jci77632

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert R. La Spada M.D., Ph.D. .

Editor information

Editors and Affiliations

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dickey, A.S., La Spada, A.R. (2016). Transcription Modulation of Mitochondrial Function and Related Pathways as a Therapeutic Opportunity in Parkinson’s Disease. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_12

Download citation

Publish with us

Policies and ethics