Skip to main content

Early Nicotine Exposure Is Protective in Familial and Idiopathic Models of Parkinson’s Disease

  • Chapter
  • First Online:
Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease

Abstract

Current therapeutic strategies available to Parkinson’s disease (PD) patients are directed toward symptom management. As the disease progresses, these strategies inevitably fall short as neurodegeneration continues. Evidence from epidemiological studies strongly supports that long-term tobacco users are less likely to be diagnosed with PD. Further, animal model studies support that nicotine, the psychoactive and addictive component of tobacco, is neuroprotective. However, clinical trials have failed to replicate nicotine-mediated neuroprotection, perhaps because nicotine needs to be administered much earlier in the disease process, possibly even before disease onset, which many scientists and clinicians believe is years or even decades before symptoms occur. This creates a major obstacle in therapeutic development since the vast majority of patients acquire PD from unknown causes and because patients are typically diagnosed after motor symptom onset, when degeneration is advanced. Nonetheless, mechanisms by which nicotine may offer neuroprotection in animal models are emerging, and these include processes mediated by and those that are independent of nicotinic acetylcholine receptors (nAChRs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernán, M.A., et al.: Cigarette smoking and the incidence of Parkinson’s disease in two prospective studies. Ann. Neurol. 50, 780–786 (2001). doi:10.1002/ana.10028

    Article  PubMed  Google Scholar 

  2. Thacker, E.L., et al.: Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology 68, 764–768 (2007). doi:10.1212/01.wnl.0000256374.50227.4b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morens, D., Grandinetti, A., Reed, D., White, L., Ross, G.: Cigarette smoking and protection from Parkinson’s disease False association or etiologic clue? Neurology 45, 1041–1051 (1995)

    Article  CAS  PubMed  Google Scholar 

  4. Gorell, J.M., Rybicki, B.A., Johnson, C.C., Peterson, E.L.: Smoking and Parkinson’s disease A dose–response relationship. Neurology 52, 115 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Ritz, B., et al.: Pooled analysis of tobacco use and risk of Parkinson disease. Arch. Neurol. 64, 990–997 (2007)

    Article  PubMed  Google Scholar 

  6. Checkoway, H., et al.: Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am. J. Epidemiol. 155, 732–738 (2002)

    Article  PubMed  Google Scholar 

  7. Li, X., Li, W., Liu, G., Shen, X., Tang, Y.: Association between cigarette smoking and Parkinson’s disease: a meta-analysis. Arch. Gerontol. Geriatr. 61, 510–516 (2015). doi:10.1016/j.archger.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  8. Kiyohara, C., Kusuhara, S.: Cigarette smoking and Parkinson’s disease: a meta-analysis. Fukuoka Igaku Zasshi 102, 254–265 (2011)

    CAS  PubMed  Google Scholar 

  9. Mellick, G.D., Gartner, C.E., Silburn, P.A., Battistutta, D.: Passive smoking and Parkinson disease. Neurology 67, 179–180 (2006)

    Article  PubMed  Google Scholar 

  10. Haack, D.G., Baumann, R.J., McKean, H.E., Jameson, H.D., Turbek, J.A.: Nicotine exposure and Parkinson disease. Am. J. Epidemiol. 114, 191–200 (1981)

    CAS  PubMed  Google Scholar 

  11. Rajput, A.H., Offord, K.P., Beard, C.M., Kurland, L.T.: A case-control study of smoking habits, dementia, and other illnesses in idiopathic Parkinson’s disease. Neurology 37, 226–232 (1987)

    Article  CAS  PubMed  Google Scholar 

  12. Morens, D.M., et al.: Evidence against the operation of selective mortality in explaining the association between cigarette smoking and reduced occurrence of idiopathic Parkinson disease. Am. J. Epidemiol. 144, 400–404 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Ward, C.D., et al.: Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology 33, 815 (1983)

    Article  CAS  PubMed  Google Scholar 

  14. Kessler, I.I.: Epidemiologic studies of Parkinson’s disease: III. A community-based survey. Am. J. Epidemiol. 96, 242–254 (1972)

    CAS  PubMed  Google Scholar 

  15. Tanner, C., et al.: Smoking and Parkinson’s disease in twins. Neurology 58, 581–588 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Barnes, D.E., Yaffe, K.: The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet. Neurol. 10, 819–828 (2011). doi:10.1016/s1474-4422(11)70072-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cataldo, J.K., Prochaska, J.J., Glantz, S.A.: Cigarette smoking is a risk factor for Alzheimer’s Disease: an analysis controlling for tobacco industry affiliation. J. Alzheimer’s Dis. 19, 465–480 (2010). doi:10.3233/jad-2010-1240

    Google Scholar 

  18. Anstey, K.J., von Sanden, C., Salim, A., O’Kearney, R.: Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am. J. Epidemiol. 166, 367–378 (2007). doi:10.1093/aje/kwm116

    Article  PubMed  Google Scholar 

  19. Lee, Y., et al.: Systematic review of health behavioral risks and cognitive health in older adults. Int. Psychogeriatr. 22, 174–187 (2010). doi:10.1017/s1041610209991189

    Article  PubMed  Google Scholar 

  20. Peters, R., et al.: Smoking, dementia and cognitive decline in the elderly, a systematic review. BMC Geriatr. 8, 36 (2008). doi:10.1186/1471-2318-8-36

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, H.X., Fratiglioni, L., Frisoni, G.B., Viitanen, M., Winblad, B.: Smoking and the occurrence of Alzheimer’s disease: cross-sectional and longitudinal data in a population-based study. Am. J. Epidemiol. 149, 640–644 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Parain, K., et al.: Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Parkinsonian toxin. Brain Res. 984, 224–232 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Costa, G., Abin-Carriquiry, J., Dajas, F.: Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra. Brain Res. 888, 336–342 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Janson, A., Fuxe, K., Goldstein, M.: Differential effects of acute and chronic nicotine treatment on MPTP-(1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) induced degeneration of nigrostriatal dopamine neurons in the black mouse. Clin. Invest. 70, 232–238 (1992)

    CAS  Google Scholar 

  25. Quik, M., et al.: Chronic oral nicotine treatment protects against striatal degeneration in MPTP‐treated primates. J. Neurochem. 98, 1866–1875 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Quik, M., et al.: Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. J. Neurosci. 26, 4681–4689 (2006). doi:10.1523/jneurosci.0215-06.2006

    Article  CAS  PubMed  Google Scholar 

  27. Huang, L.Z., Parameswaran, N., Bordia, T., Michael McIntosh, J., Quik, M.: Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. J. Neurochem. 109, 826–837 (2009). doi:10.1111/j.1471-4159.2009.06011.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Y., et al.: Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: Implications for Parkinson’s disease. Neuropharmacology 91, 87–96 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. Khwaja, M., McCormack, A., McIntosh, J.M., Di Monte, D.A., Quik, M.: Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to alpha6beta2* nAChRs. J. Neurochem. 100, 180–190 (2007). doi:10.1111/j.1471-4159.2006.04177.x

    Article  CAS  PubMed  Google Scholar 

  30. Ryan, R.E., Ross, S.A., Drago, J., Loiacono, R.E.: Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. Br. J. Pharmacol. 132, 1650–1656 (2001). doi:10.1038/sj.bjp.0703989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y., et al.: alpha7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J. Neuroinflammation 9, 98 (2012). doi:10.1186/1742-2094-9-98

    PubMed  PubMed Central  Google Scholar 

  32. Quik, M., Di Monte, D.A.: Nicotine administration reduces striatal MPP+ levels in mice. Brain Res. 917, 219–224 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Ransom, B.R., Kunis, D.M., Irwin, I., Langston, J.W.: Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci. Lett. 75, 323–328 (1987)

    Article  CAS  PubMed  Google Scholar 

  34. Fowler, J.S., et al.: Inhibition of monoamine oxidase B in the brains of smokers. Nature 379, 733–736 (1996)

    Article  CAS  PubMed  Google Scholar 

  35. Launay, J.-M., et al.: Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One 4, e7959 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kalgutkar, A.S., Dalvie, D.K., Castagnoli, N., Taylor, T.J.: Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem. Res. Toxicol. 14, 1139–1162 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Castagnoli, K.P., Steyn, S.J., Petzer, J.P., Van der Schyf, C.J., Castagnoli, N.: Neuroprotection in the MPTP Parkinsonian C57BL/6 mouse model by a compound isolated from tobacco. Chem. Res. Toxicol. 14, 523–527 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. Moll, H.: The treatment of post-encephalitic parkinsonism by nicotine. Br. Med. J. 1, 1079 (1926)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kelton, M., Kahn, H., Conrath, C., Newhouse, P.: The effects of nicotine on Parkinson’s disease. Brain Cogn. (2000)

    Google Scholar 

  40. Fagerström, K.O., Pomerleau, O., Giordani, B., Stelson, F.: Nicotine may relieve symptoms of Parkinson’s disease. Psychopharmacology 116, 117–119 (1994)

    Article  PubMed  Google Scholar 

  41. Itti, E., et al.: Dopamine transporter imaging under high-dose transdermal nicotine therapy in Parkinson’s disease: an observational study. Nucl. Med. Commun. 30, 513–518 (2009). doi:10.1097/MNM.0b013e32832cc204

    Article  PubMed  Google Scholar 

  42. Lemay, S., et al.: Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson’s disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 28, 31–39 (2004)

    Article  CAS  Google Scholar 

  43. Vieregge, A., Sieberer, M., Jacobs, H., Hagenah, J.M., Vieregge, P.: Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology 57, 1032–1035 (2001). doi:10.1212/wnl.57.6.1032

    Article  CAS  PubMed  Google Scholar 

  44. Ebersbach, G., et al.: Worsening of motor performance in patients with Parkinson’s disease following transdermal nicotine administration. Mov. Disord. 14, 1011–1013 (1999)

    Article  CAS  PubMed  Google Scholar 

  45. Villafane, G., et al.: Chronic high dose transdermal nicotine in Parkinson’s disease: an open trial. Eur. J. Neurol. 14, 1313–1316 (2007). doi:10.1111/j.1468-1331.2007.01949.x

    Article  CAS  PubMed  Google Scholar 

  46. Kilarski, L.L., et al.: Systematic review and UK‐based study of PARK2 (parkin), PINK1, PARK7 (DJ‐1) and LRRK2 in early‐onset Parkinson’s disease. Mov. Disord. 27, 1522–1529 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. Chao, Y.X., Chew, L.M., Deng, X., Tan, E.K.: Nonmotor symptoms in idiopathic versus familial forms of Parkinson’s disease. Neurodegener. Dis. Manag. 5, 147–153 (2015). doi:10.2217/nmt.14.57

    Article  PubMed  Google Scholar 

  48. Bonifati, V.: Genetics of Parkinson’s disease. Minerva Med. 96, 175–186 (2005)

    CAS  PubMed  Google Scholar 

  49. Greene, J.C., et al.: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. U. S. A. 100, 4078–4083 (2003). doi:10.1073/pnas.0737556100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clark, I.E., et al.: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Y., et al.: Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl. Acad. Sci. U. S. A. 102, 13670–13675 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feany, M.B., Bender, W.W.: A Drosophila model of Parkinson’s disease. Nature 404, 394–398 (2000). doi:10.1038/35006074

    Article  CAS  PubMed  Google Scholar 

  53. Chambers, R.P., et al.: Nicotine increases lifespan and rescues olfactory and motor deficits in a Drosophila model of Parkinson’s disease. Behav. Brain Res. 253, 95–102 (2013). doi:10.1016/j.bbr.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  54. Mitsuoka, T., et al.: Effects of nicotine chewing gum on UPDRS score and P300 in early-onset parkinsonism. Hiroshima J. Med. Sci. 51, 33–39 (2002)

    CAS  PubMed  Google Scholar 

  55. Dajas, F., Costa, G., Abin-Carriquiry, J.A., McGregor, R., Urbanavicius, J.: Involvement of nicotinic acetylcholine receptors in the protection of dopamine terminals in experimental parkinsonism. Funct. Neurol. 16, 113–123 (2001)

    CAS  PubMed  Google Scholar 

  56. Grady, S.R., et al.: The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem. Pharmacol. 74, 1235–1246 (2007). doi:10.1016/j.bcp.2007.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hogg, R.C., Raggenbass, M., Bertrand, D.: Nicotinic acetylcholine receptors: from structure to brain function. Rev. Physiol. Biochem. Pharmacol. 147, 1–46 (2003). doi:10.1007/s10254-003-0005-1

    CAS  PubMed  Google Scholar 

  58. Gentry, C.L., Lukas, R.J.: Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr. Drug Targets: CNS Neurol. Disord. 1, 359–385 (2002)

    CAS  Google Scholar 

  59. Quick, M.W., Lester, R.A.: Desensitization of neuronal nicotinic receptors. J. Neurobiol. 53, 457–478 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. Cachope, R., et al.: Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2, 33–41 (2012). doi:10.1016/j.celrep.2012.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Threlfell, S., et al.: Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75, 58–64 (2012). doi:10.1016/j.neuron.2012.04.038

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, T., et al.: Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. J. Neurosci. 29, 4035–4043 (2009). doi:10.1523/jneurosci.0261-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, F.M., Liang, Y., Dani, J.A.: Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat. Neurosci. 4, 1224–1229 (2001). doi:10.1038/nn769

    Article  CAS  PubMed  Google Scholar 

  64. Azam, L., McIntosh, J.M.: Effect of novel alpha-conotoxins on nicotine-stimulated [3H]dopamine release from rat striatal synaptosomes. J. Pharmacol. Exp. Ther. 312, 231–237 (2005). doi:10.1124/jpet.104.071456

    Article  CAS  PubMed  Google Scholar 

  65. Yang, K., et al.: Functional nicotinic acetylcholine receptors containing alpha6 subunits are on GABAergic neuronal boutons adherent to ventral tegmental area dopamine neurons. J. Neurosci. 31, 2537–2548 (2011). doi:10.1523/JNEUROSCI.3003-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keath, J.R., Iacoviello, M.P., Barrett, L.E., Mansvelder, H.D., McGehee, D.S.: Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons. J. Neurophysiol. 98, 3388–3396 (2007). doi:10.1152/jn.00760.2007

    Article  CAS  PubMed  Google Scholar 

  67. Bordia, T., Grady, S.R., McIntosh, J.M., Quik, M.: Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Mol. Pharmacol. 72, 52–61 (2007). doi:10.1124/mol.107.035998

    Article  CAS  PubMed  Google Scholar 

  68. Quik, M., Polonskaya, Y., Kulak, J.M., McIntosh, J.M.: Vulnerability of 125I-alpha-conotoxin MII binding sites to nigrostriatal damage in monkey. J. Neurosci. 21, 5494–5500 (2001)

    CAS  PubMed  Google Scholar 

  69. Chen, M.K., et al.: VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J. Neurochem. 105, 78–90 (2008). doi:10.1111/j.1471-4159.2007.05108.x

    Article  CAS  PubMed  Google Scholar 

  70. Kordower, J.H., et al.: Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136, 2419–2431 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  71. Champtiaux, N., et al.: Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J. Neurosci. 23, 7820–7829 (2003)

    CAS  PubMed  Google Scholar 

  72. Park, H.J., et al.: Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur. J. Neurosci. 26, 79–89 (2007). doi:10.1111/j.1460-9568.2007.05636.x

    Article  PubMed  Google Scholar 

  73. Toulorge, D., et al.: Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2+. FASEB J. 25, 2563–2573 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. Shaw, S., Bencherif, M., Marrero, M.B.: Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1-42) amyloid. J. Biol. Chem. 277, 44920–44924 (2002). doi:10.1074/jbc.M204610200

    Article  CAS  PubMed  Google Scholar 

  75. Marrero, M.B., Bencherif, M.: Convergence of alpha 7 nicotinic acetylcholine receptor-activated pathways for anti-apoptosis and anti-inflammation: central role for JAK2 activation of STAT3 and NF-kappaB. Brain Res. 1256, 1–7 (2009). doi:10.1016/j.brainres.2008.11.053

    Article  CAS  PubMed  Google Scholar 

  76. Gergalova, G., et al.: Mitochondria express alpha7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One 7, e31361 (2012). doi:10.1371/journal.pone.0031361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Greenbaum, L., et al.: Association of nicotine dependence susceptibility gene, CHRNA5, with Parkinson’s disease age at onset: gene and smoking status interaction. Parkinsonism Relat. Disord. 19, 72–76 (2013)

    Article  PubMed  Google Scholar 

  78. Henley, B.M., et al.: Transcriptional regulation by nicotine in dopaminergic neurons. Biochem. Pharmacol. 86, 1074–1083 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kane, J.K., Konu, O., Ma, J.Z., Li, M.D.: Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. Brain Res. Mol. Brain Res. 132, 181–191 (2004). doi:10.1016/j.molbrainres.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  80. Oldendorf, W.H.: Lipid solubility and drug penetration of the blood brain barrier. Exp. Biol. Med. 147, 813–816 (1974)

    Article  CAS  Google Scholar 

  81. Ono, K., Hirohata, M., Yamada, M.: Anti-fibrillogenic and fibril-destabilizing activity of nicotine in vitro: implications for the prevention and therapeutics of Lewy body diseases. Exp. Neurol. 205, 414–424 (2007). doi:10.1016/j.expneurol.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  82. Hong, D.-P., Fink, A.L., Uversky, V.N.: Smoking and Parkinson’s disease: does nicotine affect α-synuclein fibrillation? Biochim. Biophys. Acta, Proteins Proteomics 1794, 282–290 (2009)

    Article  CAS  Google Scholar 

  83. Soto-Otero, R., Mendez-Alvarez, E., Hermida-Ameijeiras, A., Lopez-Real, A.M., Labandeira-Garcia, J.L.: Effects of (−)-nicotine and (−)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochem. Pharmacol. 64, 125–135 (2002)

    Article  CAS  PubMed  Google Scholar 

  84. Ferger, B., et al.: Effects of nicotine on hydroxyl free radical formation in vitro and on MPTP-induced neurotoxicity in vivo. Naunyn Schmiedeberg’s Arch. Pharmacol. 358, 351–359 (1998)

    Article  CAS  Google Scholar 

  85. Liu, Q., Tao, Y., Zhao, B.: ESR study on scavenging effect of nicotine on free radicals. Appl. Magn. Reson. 24, 105–112 (2003)

    Article  Google Scholar 

  86. Linert, W., et al.: In vitro and in vivo studies investigating possible antioxidant actions of nicotine: relevance to Parkinson’s and Alzheimer’s diseases. Biochim. Biophys. Acta 1454, 143–152 (1999)

    Article  CAS  PubMed  Google Scholar 

  87. Cormier, A., Morin, C., Zini, R., Tillement, J.-P., Lagrue, G.: In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation. Brain Res. 900, 72–79 (2001)

    Article  CAS  PubMed  Google Scholar 

  88. Cormier, A., Morin, C., Zini, R., Tillement, J.P., Lagrue, G.: Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology 44, 642–652 (2003). doi:10.1016/s0028-3908(03)00041-8

    Article  CAS  PubMed  Google Scholar 

  89. Xie, Y.X., Bezard, E., Zhao, B.L.: Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J. Biol. Chem. 280, 32405–32412 (2005). doi:10.1074/jbc.M504664200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori M. Buhlman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buhlman, L.M., Hu, J. (2016). Early Nicotine Exposure Is Protective in Familial and Idiopathic Models of Parkinson’s Disease. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_11

Download citation

Publish with us

Policies and ethics