Skip to main content

Abstract

Reactive oxygen species (ROS) are by-products of cellular metabolism or of xenobiotic exposure. Depending on their level, ROS can be detrimental leading to oxidative modifications in cellular lipids, proteins, or DNA or can be beneficial participating in intracellular signaling or cell regulation. Mitochondria are a quantitatively relevant intracellular source of ROS which are mainly produced as a result of monoelectron reduction of oxygen at the level of the respiratory chain complexes. Additionally, mitochondrial redox systems, such us glutathione, thioredoxin, and pyridine nucleotide redox couples, are involved in the antioxidant defense participating in modulation of mitochondrial functions including apoptotic cell death. Imbalance between ROS and the antioxidant defense leads to oxidative stress and oxidative changes to cellular biomolecules. Apoptosis or programmed cell death is initiated either at the plasma membrane (extrinsic) receptor-mediated apoptosis or at the mitochondria (intrinsic)-mediated apoptosis, respectively. High levels of mitochondrial ROS (mtROS) can initiate intrinsic apoptosis leading to the release of mitochondrial apoptogenic factors like cytochrome c, apoptosis-inducing factor, into the cytosol. Moreover, mtROS can oxidize mitochondrial glutathione (GSH) causing the loss of intramitochondrial redox homeostasis and irreversible oxidative modifications to mitochondrial macromolecules including mitochondrial DNA. In addition to glutathione, thioredoxin and thioredoxin-dependent enzymes are involved in the removal of hydrogen peroxide and in the redox regulation of mitochondrial protein functions. The reductant for these two redox systems is NADPH and mitochondrial sources, including nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase, and malic enzyme. A better understanding of the redox control of apoptosis initiation and execution could stem the development of novel therapeutic interventions for oxidative stress-associated pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell, B., Gutteridge, J.M.: Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Circu, M.L., Aw, T.Y.: Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010). doi:10.1016/j.freeradbiomed.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bolisetty, S., Jaimes, E.A.: Mitochondria and reactive oxygen species: physiology and pathophysiology. Int. J. Mol. Sci. 14, 6306–6344 (2013). doi:10.3390/ijms14036306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Droge, W.: Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002). doi:10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  5. Brand, M.D., et al.: Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755–767 (2004). doi:10.1016/j.freeradbiomed.2004.05.034

    Article  CAS  PubMed  Google Scholar 

  6. Brown, G.C.: Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J. 284(Pt 1), 1–13 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turrens, J.F.: Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003). doi:10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tahara, E.B., Navarete, F.D., Kowaltowski, A.J.: Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med. 46, 1283–1297 (2009). doi:10.1016/j.freeradbiomed.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Boveris, A.: Mitochondrial production of hydrogen peroxide in Saccharomyces cerevisiae. Acta Physiol. Lat. Am. 26, 303–309 (1976)

    CAS  PubMed  Google Scholar 

  10. Cadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O.: Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180, 248–257 (1977)

    Article  CAS  PubMed  Google Scholar 

  11. Turrens, J.F., Alexandre, A., Lehninger, A.L.: Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237, 408–414 (1985)

    Article  CAS  PubMed  Google Scholar 

  12. Han, D., Antunes, F., Canali, R., Rettori, D., Cadenas, E.: Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J. Biol. Chem. 278, 5557–5563 (2003). doi:10.1074/jbc.M210269200

    Article  CAS  PubMed  Google Scholar 

  13. Muller, F.L., Liu, Y., Van Remmen, H.: Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279, 49064–49073 (2004). doi:10.1074/jbc.M407715200

    Article  CAS  PubMed  Google Scholar 

  14. Chance, B., Boveris, A., Oshino, N., Loschen, G.: In: King, T.E., Morrison, M. (eds.) Oxidases and related redox systems, pp. 350–353. University Press, Baltimore, MD (1973)

    Google Scholar 

  15. Turrens, J.F., Boveris, A.: Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adam-Vizi, V., Chinopoulos, C.: Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci. 27, 639–645 (2006). doi:10.1016/j.tips.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Kussmaul, L., Hirst, J.: The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. U. S. A. 103, 7607–7612 (2006). doi:10.1073/pnas.0510977103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeshige, K., Minakami, S.: NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180, 129–135 (1979)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chance, B., Hollunger, G.: The interaction of energy and electron transfer reactions in mitochondria IV. The pathway of electron transfer. J. Biol. Chem. 236, 1562–1568 (1961)

    CAS  PubMed  Google Scholar 

  20. Cino, M., Del Maestro, R.F.: Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269, 623–638 (1989)

    Article  CAS  PubMed  Google Scholar 

  21. Lambert, A.J., Brand, M.D.: Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 279, 39414–39420 (2004). doi:10.1074/jbc.M406576200

    Article  CAS  PubMed  Google Scholar 

  22. Kushnareva, Y., Murphy, A.N., Andreyev, A.: Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) + oxidation-reduction state. Biochem. J. 368, 545–553 (2002). doi:10.1042/BJ20021121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Genova, M.L., et al.: Mitochondrial production of oxygen radical species and the role of Coenzyme Q as an antioxidant. Exp. Biol. Med. (Maywood) 228, 506–513 (2003)

    CAS  Google Scholar 

  24. Liu, Y., Fiskum, G., Schubert, D.: Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80, 780–787 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Miwa, S., St-Pierre, J., Partridge, L., Brand, M.D.: Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic. Biol. Med. 35, 938–948 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Lambert, A.J., Brand, M.D.: Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J. 382, 511–517 (2004). doi:10.1042/bj20040485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drahota, Z., et al.: Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J. Bioenerg. Biomembr. 34, 105–113 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Miwa, S., Brand, M.D.: The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim. Biophys. Acta 1709, 214–219 (2005). doi:10.1016/j.bbabio.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  29. St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D.: Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277, 44784–44790 (2002). doi:10.1074/jbc.M207217200

    Article  CAS  PubMed  Google Scholar 

  30. Seifert, E.L., Estey, C., Xuan, J.Y., Harper, M.E.: Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J. Biol. Chem. 285, 5748–5758 (2010). doi:10.1074/jbc.M109.026203

    Article  CAS  PubMed  Google Scholar 

  31. Quinlan, C.L., et al.: Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 287, 27255–27264 (2012). doi:10.1074/jbc.M112.374629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Starkov, A.A., et al.: Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24, 7779–7788 (2004). doi:10.1523/JNEUROSCI.1899-04.2004

    Article  CAS  PubMed  Google Scholar 

  33. Cadenas, E., Davies, K.J.: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222–230 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. Miramar, M.D., et al.: NADH oxidase activity of mitochondrial apoptosis-inducing factor. J. Biol. Chem. 276, 16391–16398 (2001). doi:10.1074/jbc.M010498200

    Article  CAS  PubMed  Google Scholar 

  35. Forman, H.J., Kennedy, J.: Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch. Biochem. Biophys. 173, 219–224 (1976)

    Article  CAS  PubMed  Google Scholar 

  36. Dickinson, D.A., Forman, H.J.: Cellular glutathione and thiols metabolism. Biochem. Pharmacol. 64, 1019–1026 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Aw, T.Y., Wierzbicka, G., Jones, D.P.: Oral glutathione increases tissue glutathione in vivo. Chem. Biol. Interact. 80, 89–97 (1991)

    Article  CAS  PubMed  Google Scholar 

  38. Shan, X.Q., Aw, T.Y., Jones, D.P.: Glutathione-dependent protection against oxidative injury. Pharmacol. Ther. 47, 61–71 (1990)

    Article  CAS  PubMed  Google Scholar 

  39. Hagen, T.M., Jones, D.P.: Transepithelial transport of glutathione in vascularly perfused small intestine of rat. Am. J. Phys. 252, G607–G613 (1987)

    CAS  Google Scholar 

  40. Meister, A., Anderson, M.E.: Glutathione. Annu. Rev. Biochem. 52, 711–760 (1983). doi:10.1146/annurev.bi.52.070183.003431

    Article  CAS  PubMed  Google Scholar 

  41. Circu, M.L., Aw, T.Y.: Glutathione and modulation of cell apoptosis. Biochim. Biophys. Acta 1823, 1767–1777 (2012). doi:10.1016/j.bbamcr.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Circu, M.L., Aw, T.Y.: Glutathione and apoptosis. Free Radic. Res. 42, 689–706 (2008). doi:10.1080/10715760802317663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jocelyn, P.C., Kamminga, A.: The non-protein thiol of rat liver mitochondria. Biochim. Biophys. Acta 343, 356–362 (1974)

    Article  CAS  PubMed  Google Scholar 

  44. Schnellmann, R.G.: Renal mitochondrial glutathione transport. Life Sci. 49, 393–398 (1991)

    Article  CAS  PubMed  Google Scholar 

  45. Fernandez-Checa, J.C., Kaplowitz, N., Garcia-Ruiz, C., Colell, A.: Mitochondrial glutathione: importance and transport. Semin. Liver Dis. 18, 389–401 (1998)

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Z., Lash, L.H.: Evidence for mitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J. Pharmacol. Exp. Ther. 285, 608–618 (1998)

    CAS  PubMed  Google Scholar 

  47. Wadey, A.L., Muyderman, H., Kwek, P.T., Sims, N.R.: Mitochondrial glutathione uptake: characterization in isolated brain mitochondria and astrocytes in culture. J. Neurochem. 109(Suppl 1), 101–108 (2009). doi:10.1111/j.1471-4159.2009.05936.x

    Article  CAS  PubMed  Google Scholar 

  48. Hu, J., Dong, L., Outten, C.E.: The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J. Biol. Chem. 283, 29126–29134 (2008). doi:10.1074/jbc.M803028200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., Fernandez-Checa, J.C.: Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal. 11, 2685–2700 (2009). doi:10.1089/ARS.2009.2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schuckelt, R., et al.: Phospholipid hydroperoxide glutathione peroxidase is a selenoenzyme distinct from the classical glutathione peroxidase as evident from cDNA and amino acid sequencing. Free Radic. Res. Commun. 14, 343–361 (1991)

    Article  CAS  PubMed  Google Scholar 

  51. Han, D., et al.: Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry 44, 11986–11996 (2005). doi:10.1021/bi0509393

    Article  CAS  PubMed  Google Scholar 

  52. Nulton-Persson, A.C., Starke, D.W., Mieyal, J.J., Szweda, L.I.: Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42, 4235–4242 (2003). doi:10.1021/bi027370f

    Article  CAS  PubMed  Google Scholar 

  53. Kil, I.S., Park, J.W.: Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J. Biol. Chem. 280, 10846–10854 (2005). doi:10.1074/jbc.M411306200

    Article  CAS  PubMed  Google Scholar 

  54. Garcia, J., et al.: Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J. Biol. Chem. 285, 39646–39654 (2010). doi:10.1074/jbc.M110.164160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wenzel, P., et al.: Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity Implications for mitochondrial oxidative stress and nitrate tolerance. J. Biol. Chem. 282, 792–799 (2007). doi:10.1074/jbc.M606477200

    Article  CAS  PubMed  Google Scholar 

  56. Taylor, E.R., et al.: Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 278, 19603–19610 (2003). doi:10.1074/jbc.M209359200

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Y.R., Chen, C.L., Pfeiffer, D.R., Zweier, J.L.: Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J. Biol. Chem. 282, 32640–32654 (2007). doi:10.1074/jbc.M702294200

    Article  CAS  PubMed  Google Scholar 

  58. West, M.B., Hill, B.G., Xuan, Y.T., Bhatnagar, A.: Protein glutathiolation by nitric oxide: an intracellular mechanism regulating redox protein modification. FASEB J. 20, 1715–1717 (2006). doi:10.1096/fj.06-5843fje

    Article  CAS  PubMed  Google Scholar 

  59. Holmgren, A., Aslund, F.: Glutaredoxin. Methods Enzymol. 252, 283–292 (1995)

    Article  CAS  PubMed  Google Scholar 

  60. Johansson, C., Lillig, C.H., Holmgren, A.: Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J. Biol. Chem. 279, 7537–7543 (2004). doi:10.1074/jbc.M312719200

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura, H., Nakamura, K., Yodoi, J.: Redox regulation of cellular activation. Annu. Rev. Immunol. 15, 351–369 (1997). doi:10.1146/annurev.immunol.15.1.351

    Article  CAS  PubMed  Google Scholar 

  62. Hansen, J.M., Go, Y.M., Jones, D.P.: Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 46, 215–234 (2006). doi:10.1146/annurev.pharmtox.46.120604.141122

    Article  CAS  PubMed  Google Scholar 

  63. Nonn, L., Williams, R.R., Erickson, R.P., Powis, G.: The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell. Biol. 23, 916–922 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smart, D.K., et al.: Thioredoxin reductase as a potential molecular target for anticancer agents that induce oxidative stress. Cancer Res. 64, 6716–6724 (2004). doi:10.1158/0008-5472.CAN-03-3990

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, H., Go, Y.M., Jones, D.P.: Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch. Biochem. Biophys. 465, 119–126 (2007). doi:10.1016/j.abb.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  66. Cox, A.G., et al.: Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins. Biochem. J. 421, 51–58 (2009). doi:10.1042/BJ20090242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Woo, H.A., et al.: Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653–656 (2003). doi:10.1126/science.1080273

    Article  CAS  PubMed  Google Scholar 

  68. Rydstrom, J.: Mitochondrial NADPH, transhydrogenase and disease. Biochim. Biophys. Acta 1757, 721–726 (2006). doi:10.1016/j.bbabio.2006.03.010

    Article  PubMed  CAS  Google Scholar 

  69. Hoek, J.B., Rydstrom, J.: Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254, 1–10 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ying, W.: NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10, 179–206 (2008). doi:10.1089/ars.2007.1672

    Article  CAS  PubMed  Google Scholar 

  71. Arkblad, E.L., et al.: A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free Radic. Biol. Med. 38, 1518–1525 (2005). doi:10.1016/j.freeradbiomed.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  72. Sheeran, F.L., Rydstrom, J., Shakhparonov, M.I., Pestov, N.B., Pepe, S.: Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim. Biophys. Acta 1797, 1138–1148 (2010). doi:10.1016/j.bbabio.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  73. Sazanov, L.A., Jackson, J.B.: Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett. 344, 109–116 (1994)

    Article  CAS  PubMed  Google Scholar 

  74. Edinger, A.L., Thompson, C.B.: Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004). doi:10.1016/j.ceb.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  75. Barnhart, B.C., Alappat, E.C., Peter, M.E.: The CD95 type I/type II model. Semin. Immunol. 15, 185–193 (2003)

    Article  CAS  PubMed  Google Scholar 

  76. Han, D., Ybanez, M.D., Ahmadi, S., Yeh, K., Kaplowitz, N.: Redox regulation of tumor necrosis factor signaling. Antioxid. Redox Signal. 11, 2245–2263 (2009). doi:10.1089/ARS.2009.2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kreuz, S., Siegmund, D., Scheurich, P., Wajant, H.: NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001). doi:10.1128/MCB.21.12.3964-3973.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Y., Min, W.: Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ. Res. 90, 1259–1266 (2002)

    Article  CAS  PubMed  Google Scholar 

  79. Saitoh, M., et al.: Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606 (1998). doi:10.1093/emboj/17.9.2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ventura, J.J., Cogswell, P., Flavell, R.A., Baldwin Jr., A.S., Davis, R.J.: JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev. 18, 2905–2915 (2004). doi:10.1101/gad.1223004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aoki, H., et al.: Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J. Biol. Chem. 277, 10244–10250 (2002). doi:10.1074/jbc.M112355200

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, X., Wang, X.: Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73, 87–106 (2004). doi:10.1146/annurev.biochem.73.011303.073706

    Article  CAS  PubMed  Google Scholar 

  83. Susin, S.A., et al.: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999). doi:10.1038/17135

    Article  CAS  PubMed  Google Scholar 

  84. Rasola, A., Bernardi, P.: The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12, 815–833 (2007). doi:10.1007/s10495-007-0723-y

    Article  CAS  PubMed  Google Scholar 

  85. Orrenius, S., Gogvadze, V., Zhivotovsky, B.: Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143–183 (2007). doi:10.1146/annurev.pharmtox.47.120505.105122

    Article  CAS  PubMed  Google Scholar 

  86. Sileikyte, J., et al.: Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (Translocator Protein of 18 kDa (TSPO)). J. Biol. Chem. 289, 13769–13781 (2014). doi:10.1074/jbc.M114.549634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schinzel, A.C., et al.: Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. U. S. A. 102, 12005–12010 (2005). doi:10.1073/pnas.0505294102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baines, C.P., Kaiser, R.A., Sheiko, T., Craigen, W.J., Molkentin, J.D.: Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550–555 (2007). doi:10.1038/ncb1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Orrenius, S., Nicotera, P., Zhivotovsky, B.: Cell death mechanisms and their implications in toxicology. Toxicol. Sci. 119, 3–19 (2011). doi:10.1093/toxsci/kfq268

    Article  CAS  PubMed  Google Scholar 

  90. Eskes, R., Desagher, S., Antonsson, B., Martinou, J.C.: Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Desagher, S., et al.: Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang, X., Jiang, H., Shen, Z., Wang, X.: Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc. Natl. Acad. Sci. U. S. A. 111, 14782–14787 (2014). doi:10.1073/pnas.1417253111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, D., Lu, C., Whiteman, M., Chance, B., Armstrong, J.S.: The mitochondrial permeability transition regulates cytochrome c release for apoptosis during endoplasmic reticulum stress by remodeling the cristae junction. J. Biol. Chem. 283, 3476–3486 (2008). doi:10.1074/jbc.M707528200

    Article  CAS  PubMed  Google Scholar 

  94. Frezza, C., et al.: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006). doi:10.1016/j.cell.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  95. Venditti, P., Di Stefano, L., Di Meo, S.: Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13, 71–82 (2013). doi:10.1016/j.mito.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  96. Sies, H.: Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289, 8735–8741 (2014). doi:10.1074/jbc.R113.544635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Marchissio, M.J., Frances, D.E., Carnovale, C.E., Marinelli, R.A.: Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol. Appl. Pharmacol. 264, 246–254 (2012). doi:10.1016/j.taap.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  98. Kroemer, G., Galluzzi, L., Brenner, C.: Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007). doi:10.1152/physrev.00013.2006

    Article  CAS  PubMed  Google Scholar 

  99. Madesh, M., Hajnoczky, G.: VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J. Cell Biol. 155, 1003–1015 (2001). doi:10.1083/jcb.200105057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Giron-Calle, J., Zwizinski, C.W., Schmid, H.H.: Peroxidative damage to cardiac mitochondria. II. Immunological analysis of modified adenine nucleotide translocase. Arch. Biochem. Biophys. 315, 1–7 (1994)

    Article  CAS  PubMed  Google Scholar 

  101. Cook, S.A., Sugden, P.H., Clerk, A.: Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ. Res. 85, 940–949 (1999)

    Article  CAS  PubMed  Google Scholar 

  102. Lim, C.B., et al.: Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis. Oncotarget 6, 1519–1530 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  103. de Arriba, G., et al.: Vitamin E protects against the mitochondrial damage caused by cyclosporin A in LLC-PK1 cells. Toxicol. Appl. Pharmacol. 239, 241–250 (2009). doi:10.1016/j.taap.2009.05.028

    Article  PubMed  CAS  Google Scholar 

  104. Sanderson, T.H., Raghunayakula, S., Kumar, R.: Release of mitochondrial Opa1 following oxidative stress in HT22 cells. Mol. Cell. Neurosci. 64, 116–122 (2015). doi:10.1016/j.mcn.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jacquemin, G., et al.: Granzyme B-induced mitochondrial ROS are required for apoptosis. Cell Death Differ. (2014). doi:10.1038/cdd.2014.180

    PubMed  PubMed Central  Google Scholar 

  106. Manago, A., Becker, K.A., Carpinteiro, A., Wilker, B., Saddemann, M., Seitz, A.P., Edwards, M.J., Grassme, H., Szabo, I., Gulbins, E.: Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid. Redox Signal. 22(13), 1097–1110 (2015). doi:10.1089/ars.2014.5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Iverson, S.L., Orrenius, S.: The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch. Biochem. Biophys. 423, 37–46 (2004)

    Article  CAS  PubMed  Google Scholar 

  108. Tuominen, E.K., Wallace, C.J., Kinnunen, P.K.: Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J. Biol. Chem. 277, 8822–8826 (2002). doi:10.1074/jbc.M200056200

    Article  CAS  PubMed  Google Scholar 

  109. Wiswedel, I., Gardemann, A., Storch, A., Peter, D., Schild, L.: Degradation of phospholipids by oxidative stress--exceptional significance of cardiolipin. Free Radic. Res. 44, 135–145 (2010)

    Article  CAS  PubMed  Google Scholar 

  110. Kagan, V.E., et al.: Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 (2005). doi:10.1038/nchembio727

    Article  CAS  PubMed  Google Scholar 

  111. Gonzalvez, F., et al.: tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ. 12, 614–626 (2005). doi:10.1038/sj.cdd.4401571

    Article  CAS  PubMed  Google Scholar 

  112. Muyderman, H., Nilsson, M., Sims, N.R.: Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite. J. Neurosci. 24, 8019–8028 (2004). doi:10.1523/JNEUROSCI.1103-04.2004

    Article  CAS  PubMed  Google Scholar 

  113. Circu, M.L., Rodriguez, C., Maloney, R., Moyer, M.P., Aw, T.Y.: Contribution of mitochondrial GSH transport to matrix GSH status and colonic epithelial cell apoptosis. Free Radic. Biol. Med. 44, 768–778 (2008). doi:10.1016/j.freeradbiomed.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  114. Mari, M., et al.: Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation. Gastroenterology 134, 1507–1520 (2008). doi:10.1053/j.gastro.2008.01.073

    Article  CAS  PubMed  Google Scholar 

  115. Cunningham, C.C., Bailey, S.M.: Ethanol consumption and liver mitochondria function. Biol. Signals Recept. 10, 271–282 (2001). doi:46892

    Article  CAS  PubMed  Google Scholar 

  116. Ghosh, S., et al.: Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am. J. Physiol. Heart Circ. Physiol. 289, H768–H776 (2005). doi:10.1152/ajpheart.00038.2005

    Article  CAS  PubMed  Google Scholar 

  117. Wullner, U., et al.: Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 826, 53–62 (1999)

    Article  CAS  PubMed  Google Scholar 

  118. Chen, Z., Putt, D.A., Lash, L.H.: Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Arch. Biochem. Biophys. 373, 193–202 (2000). doi:10.1006/abbi.1999.1527

    Article  CAS  PubMed  Google Scholar 

  119. Xu, F., Putt, D.A., Matherly, L.H., Lash, L.H.: Modulation of expression of rat mitochondrial 2-oxoglutarate carrier in NRK-52E cells alters mitochondrial transport and accumulation of glutathione and susceptibility to chemically induced apoptosis. J. Pharmacol. Exp. Ther. 316, 1175–1186 (2006). doi:10.1124/jpet.105.094599

    Article  CAS  PubMed  Google Scholar 

  120. Lash, L.H., Putt, D.A., Matherly, L.H.: Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter. J. Pharmacol. Exp. Ther. 303, 476–486 (2002). doi:10.1124/jpet.102.040220

    Article  CAS  PubMed  Google Scholar 

  121. Zimmermann, A.K., et al.: Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J. Biol. Chem. 282, 29296–29304 (2007). doi:10.1074/jbc.M702853200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bakkenist, C.J., Kastan, M.B.: Initiating cellular stress responses. Cell 118, 9–17 (2004). doi:10.1016/j.cell.2004.06.023

    Article  CAS  PubMed  Google Scholar 

  123. Ballinger, S.W., et al.: Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ. Res. 86, 960–966 (2000)

    Article  CAS  PubMed  Google Scholar 

  124. Ide, T., et al.: Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ. Res. 88, 529–535 (2001)

    Article  CAS  PubMed  Google Scholar 

  125. de la Asuncion, J.G., et al.: Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J. 10, 333–338 (1996)

    PubMed  Google Scholar 

  126. Esteve, J.M., et al.: Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro. FASEB J. 13, 1055–1064 (1999)

    CAS  PubMed  Google Scholar 

  127. Suliman, H.B., et al.: Rapid mtDNA deletion by oxidants in rat liver mitochondria after hemin exposure. Free Radic. Biol. Med. 32, 246–256 (2002)

    Article  CAS  PubMed  Google Scholar 

  128. Circu, M.L., Moyer, M.P., Harrison, L., Aw, T.Y.: Contribution of glutathione status to oxidant-induced mitochondrial DNA damage in colonic epithelial cells. Free Radic. Biol. Med. 47, 1190–1198 (2009). doi:10.1016/j.freeradbiomed.2009.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Perez, V.I., et al.: Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic. Biol. Med. 44, 882–892 (2008). doi:10.1016/j.freeradbiomed.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  130. Tanaka, T., et al.: Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 21, 1695–1703 (2002). doi:10.1093/emboj/21.7.1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, D., et al.: Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. J. Biol. Chem. 281, 7384–7391 (2006). doi:10.1074/jbc.M509876200

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, X., et al.: Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes. Free Radic. Biol. Med. 50, 811–820 (2011). doi:10.1016/j.freeradbiomed.2010.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, R., et al.: Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ. Res. 94, 1483–1491 (2004). doi:10.1161/01.RES.0000130525.37646.a7

    Article  CAS  PubMed  Google Scholar 

  134. Saxena, G., Chen, J., Shalev, A.: Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J. Biol. Chem. 285, 3997–4005 (2010). doi:10.1074/jbc.M109.034421

    Article  CAS  PubMed  Google Scholar 

  135. Huang, Q., et al.: Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 131, 1082–1097 (2015). doi:10.1161/CIRCULATIONAHA.114.012725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rice, M.E., Russo-Menna, I.: Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82, 1213–1223 (1998)

    Article  CAS  PubMed  Google Scholar 

  137. Dumont, M., Beal, M.F.: Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med. 51, 1014–1026 (2011). doi:10.1016/j.freeradbiomed.2010.11.026

    Article  CAS  PubMed  Google Scholar 

  138. Perier, C., et al.: Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc. Natl. Acad. Sci. U. S. A. 102, 19126–19131 (2005). doi:10.1073/pnas.0508215102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pan, T., et al.: Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164, 541–551 (2009). doi:10.1016/j.neuroscience.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  140. Ahmadi, F.A., et al.: The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J. Neurochem. 87, 914–921 (2003)

    Article  CAS  PubMed  Google Scholar 

  141. Okouchi, M., Ekshyyan, O., Maracine, M., Aw, T.Y.: Neuronal apoptosis in neurodegeneration. Antioxid. Redox Signal. 9, 1059–1096 (2007). doi:10.1089/ars.2007.1511

    Article  CAS  PubMed  Google Scholar 

  142. Pereira, C., Santos, M.S., Oliveira, C.: Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: protection by antioxidants. Neurobiol. Dis. 6, 209–219 (1999). doi:10.1006/nbdi.1999.0241

    Article  CAS  PubMed  Google Scholar 

  143. Bruijn, L.I., et al.: ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997)

    Article  CAS  PubMed  Google Scholar 

  144. Tamagno, E., et al.: H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180, 144–155 (2003)

    Article  CAS  PubMed  Google Scholar 

  145. Yao, M., Nguyen, T.V., Pike, C.J.: Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J. Neurosci. 25, 1149–1158 (2005). doi:10.1523/JNEUROSCI.4736-04.2005

    Article  CAS  PubMed  Google Scholar 

  146. Takuma, K., et al.: ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J. 19, 597–598 (2005). doi:10.1096/fj.04-2582fje

    CAS  PubMed  Google Scholar 

  147. Tanaka, S., et al.: Generation of reactive oxygen species and activation of NF-kappaB by non-Abeta component of Alzheimer’s disease amyloid. J. Neurochem. 82, 305–315 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena L. Circu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El-Osta, H., Circu, M.L. (2016). Mitochondrial ROS and Apoptosis. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_1

Download citation

Publish with us

Policies and ethics