Cross Section Ratios

Part of the Springer Tracts in Modern Physics book series (STMP, volume 268)


As demonstrated in the previous chapter, valuable insights can be gained from the measurement of absolute cross sections. However, they are subject to the totality of experimental and theoretical uncertainties. Therefore, it is worthwhile to contemplate alternative observables that are either insensitive or sensitive at a reduced level to the dominant sources of uncertainty. The possibility discussed in this chapter deals with cross section ratios.


Parton Shower Cross Section Ratio Absolute Cross Section Dijet Production Dijet Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi: 10.1103/PhysRevLett.88.122003, arXiv:hep-ph/0110315
  2. 2.
    Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron hadron collisions. Phys. Rev. D 68, 094002 (2003). doi: 10.1103/PhysRevD.68.094002, arXiv:hep-ph/0307268
  3. 3.
    Z. Bern et al., Four-jet production at the large hadron collider at next-to-leading order in QCD. Phys. Rev. Lett. 109, 042001 (2012). doi: 10.1103/PhysRevLett.109.042001, arXiv:1112.3940
  4. 4.
    S. Badger, B. Biedermann, P. Uwer, V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \(\sqrt{s}=8\) TeV. Phys. Lett. B 718, 965 (2013). doi: 10.1016/j.physletb.2012.11.029, arXiv:1209.0098
  5. 5.
    S. Badger, B. Biedermann, P. Uwer, V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC. Phys. Rev. D 89, 034019 (2014). doi: 10.1103/PhysRevD.89.034019, arXiv:1309.6585
  6. 6.
    UA1 Collaboration, Comparison of three jet and two jet cross-sections in p anti-p collisions at the CERN SPS p anti-p collider. Phys. Lett. B 158, 494 (1985). doi: 10.1016/0370-2693(85)90801-9
  7. 7.
    UA2 Collaboration, Measurement of the strong coupling constant \(\alpha _s\) from a study of W bosons produced in association with jets. Phys. Lett. B 215, 175 (1988). doi: 10.1016/0370-2693(88)91093-3 ADSCrossRefGoogle Scholar
  8. 8.
    CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in \(pp\) collisions at \(\sqrt{s}\) = 7 TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). doi: 10.1140/epjc/s10052-013-2604-6, arXiv:1304.7498
  9. 9.
    ATLAS Collaboration, Measurement of multi-jet cross-section ratios and determination of the strong coupling constant in proton-proton collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Technical report, ATLAS-CONF-2013-041, CERN, 2013Google Scholar
  10. 10.
    D0 Collaboration, Measurement of angular correlations of jets at \(\sqrt{s}=1.96\) TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). doi: 10.1016/j.physletb.2012.10.003, arXiv:1207.4957
  11. 11.
    M. Wobisch et al., A new quantity for studies of dijet azimuthal decorrelations. JHEP 01, 172 (2013). doi: 10.1007/JHEP01(2013)172, arXiv:1211.6773
  12. 12.
    CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi: 10.1088/1748-0221/6/11/P11002, arXiv:1107.4277
  13. 13.
    M. Diehl, Theory Uncertainties, p. 297 (Wiley-VCH Verlag GmbH & Co. KGaA, 2013). doi: 10.1002/9783527653416.ch9
  14. 14.
    D. Becciolini et al., Constraining new colored matter from the ratio of 3 to 2 jets cross sections at the LHC. Phys. Rev. D 91, 015010 (2015). doi: 10.1103/PhysRevD.91.015010, arXiv:1403.7411
  15. 15.
    R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). doi: 10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300
  16. 16.
    K.A. Olive and others (Particle Data Group), Review of particle physics. Chin. Phys. C. 38 (2014) 090001. doi: 10.1088/1674-1137/38/9/090001
  17. 17.
    ATLAS Collaboration, Measurement of inclusive jet and dijet production in \(pp\) collisions at \(\sqrt{s}=7\) TeV using the ATLAS detector. Phys. Rev. D 86 (2012) 014022. doi: 10.1103/PhysRevD.86.014022, arXiv:1112.6297
  18. 18.
    CMS Collaboration, Measurement of the inclusive jet cross section in pp collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 107, 132001 (2011). doi: 10.1103/PhysRevLett.107.132001, arXiv:1106.0208
  19. 19.
    CMS Collaboration, Measurements of differential jet cross sections in proton-proton collisions at \(\sqrt{s}=7\) TeV with the CMS detector. Phys. Rev. D 87, 112002 (2013). doi: 10.1103/PhysRevD.87.112002, arXiv:1212.6660
  20. 20.
    M. Dasgupta, L. Magnea, G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders. JHEP 02, 055 (2008). doi: 10.1088/1126-6708/2008/02/055, arXiv:0712.3014
  21. 21.
    M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, Quantifying the performance of jet definitions for kinematic reconstruction at the LHC. JHEP 12, 032 (2008). doi: 10.1088/1126-6708/2008/12/032, arXiv:0810.1304
  22. 22.
    G. Soyez, A Simple description of jet cross-section ratios. Phys. Lett. B 698, 59 (2011). doi: 10.1016/j.physletb.2011.02.061, arXiv:1101.2665
  23. 23.
    ZEUS Collaboration, Inclusive-jet cross sections in NC DIS at HERA and a comparison of the kT, anti-kT and SIScone jet algorithms. Phys. Lett. B 691, 127 (2010). doi: 10.1016/j.physletb.2010.06.015, arXiv:1003.2923
  24. 24.
    ALICE Collaboration, Measurement of the inclusive differential jet cross section in \(pp\) collisions at \(\sqrt{s} = 2.76\) TeV. Phys. Lett. B 722 (2013) 262. doi: 10.1016/j.physletb.2013.04.026, arXiv:1301.3475
  25. 25.
    CMS Collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-\(k_T\) algorithm with radius parameters \(R = 0.5\) and \(0.7\) in pp collisions at \(\sqrt{s}\) = 7 TeV. Phys. Rev. D 90, 072006 (2014). doi: 10.1103/PhysRevD.90.072006, arXiv:1406.0324
  26. 26.
    M.L. Mangano, J. Rojo, Cross Section Ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity. JHEP 08, 010 (2012). doi: 10.1007/JHEP08(2012)010, arXiv:1206.3557
  27. 27.
    UA2 Collaboration, Measurement of the \(\sqrt{(}s)\) dependence of jet production at the CERN anti-p p collider. Phys. Lett. B 160, 349 (1985). doi: 10.1016/0370-2693(85)91341-3
  28. 28.
    UA1 Collaboration, Measurement of the inclusive jet cross-section at the CERN p anti-p collider. Phys. Lett. B 172, 461 (1986). doi: 10.1016/0370-2693(86)90290-X
  29. 29.
    CDF Collaboration, Comparison of jet production in \(\bar{p}p\) collisions at \(\sqrt{s} = 546\) GeV and 1800 GeV. Phys. Rev. Lett. 70, 1376 (1993). doi: 10.1103/PhysRevLett.70.1376
  30. 30.
    D0 Collaboration, High-\(p_T\) jets in \(\bar{p}p\) collisions at \(\sqrt{s} = 630\) GeV and 1800 GeV. Phys. Rev. D 64, 032003 (2001). doi: 10.1103/PhysRevD.64.032003, arXiv:hep-ex/0012046
  31. 31.
    J.D. Bjorken, Can we measure parton parton cross-sections? Phys. Rev. D 8, 4098 (1973). doi: 10.1103/PhysRevD.8.4098 ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Bjorken, E.A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon. Phys. Rev. 185, 1975 (1969). doi: 10.1103/PhysRev.185.1975
  33. 33.
    R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415 (1969). doi: 10.1103/PhysRevLett.23.1415
  34. 34.
    ATLAS Collaboration, Measurement of the inclusive jet cross section in \(pp\) collisions at \(\sqrt{s}=2.76\) TeV and comparison to the inclusive jet cross section at \(\sqrt{s}=7\) TeV using the ATLAS detector. Eur. Phys. J. C 73 (2013) 2509. doi: 10.1140/epjc/s10052-013-2509-4, arXiv:1304.4739
  35. 35.
    H. Terazawa, Subquark model of leptons and quarks. Phys. Rev. D 22, 184 (1980). doi: 10.1103/PhysRevD.22.184 ADSCrossRefGoogle Scholar
  36. 36.
    E. Eichten, K.D. Lane, M.E. Peskin, New tests for quark and lepton substructure. Phys. Rev. Lett. 50, 811 (1983). doi: 10.1103/PhysRevLett.50.811
  37. 37.
    U. Baur, I. Hinchliffe, D. Zeppenfeld, Excited quark production at hadron colliders. Int. J. Mod. Phys. A 2, 1285 (1987). doi: 10.1142/S0217751X87000661 ADSCrossRefGoogle Scholar
  38. 38.
    J.L. Hewett, T.G. Rizzo, Low-energy phenomenology of superstring inspired E(6) models. Phys. Rept. 183, 193 (1989). doi: 10.1016/0370-1573(89)90071-9 ADSCrossRefGoogle Scholar
  39. 39.
    P.H. Frampton, S.L. Glashow, Chiral color: an alternative to the standard model. Phys. Lett. B 190, 157 (1987). doi: 10.1016/0370-2693(87)90859-8 ADSCrossRefGoogle Scholar
  40. 40.
    E.H. Simmons, Coloron phenomenology. Phys. Rev. D 55, 1678 (1997). doi: 10.1103/PhysRevD.55.1678, arXiv:hep-ph/9608269
  41. 41.
    L. Randall, R. Sundrum, A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). doi: 10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221
  42. 42.
    E. Fermi, Versuch einer Theorie der \(\beta \)-Strahlen. I). Z. Phys. 88, 161 (1934). doi: 10.1007/BF01351864 ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    E. Fermi, Tentativo di una Teoria dei Raggi \(\beta \). Nuovo Cim. 11, 1 (1934). doi: 10.1007/BF02959820 CrossRefzbMATHGoogle Scholar
  44. 44.
    E. Eichten, I. Hinchliffe, K.D. Lane, C. Quigg, Super collider physics. Rev. Mod. Phys. 56, 579 (1984). doi: 10.1103/RevModPhys.56.579
  45. 45.
    D0 Collaboration, The dijet mass spectrum and a search for quark compositeness in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 82, 2457 (1999). doi: 10.1103/PhysRevLett.82.2457, arXiv:hep-ex/9807014
  46. 46.
    CMS Collaboration, Search for quark compositeness with the dijet centrality ratio in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 105, 262001 (2010). doi: 10.1103/PhysRevLett.105.262001, arXiv:1010.4439
  47. 47.
    ATLAS Collaboration, Search for quark contact interactions in dijet angular distributions in \(pp\) collisions at \(\sqrt{s}=7\) TeV measured with the ATLAS detector. Phys. Lett. B 694 (2011) 327. doi: 10.1016/j.physletb.2010.10.021, arXiv:1009.5069
  48. 48.
    R.D. Cousins, V.L. Highland, Incorporating systematic uncertainties into an upper limit. Nucl. Instrum. Meth. A 320, 331 (1992). doi: 10.1016/0168-9002(92)90794-5 ADSCrossRefGoogle Scholar
  49. 49.
    T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Meth. A434, 435 (1999). doi: 10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006
  50. 50.
    A.L. Read, Presentation of search results: the CL(s) technique. J. Phys. G 28, 2693 (2002). doi: 10.1088/0954-3899/28/10/313

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Experimental Nuclear PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations