Theoretical Framework

Part of the Springer Tracts in Modern Physics book series (STMP, volume 268)


Jet physics, in particular at a hadron collider such as the LHC, cannot be understood without being thoroughly familiar with the theory of the strong interaction: quantum chromodynamics or short QCD. The material presented in this chapter is intended to provide the required proficiency to comprehend experimental and phenomenological publications on the subject of jet physics, some of which will be discussed in detail in the later chapters of this book.


Monte Carlo Parton Shower Lattice Gauge Theory Strong Coupling Constant Monte Carlo Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.G. Holloway, C.P. Baker, Note on the origin of the term “barn”, Technical report, LAMS-523, Los Alamos National Laboratory, 1947. Report submitted: 13 September 1944. Report issued: 5 March 1947Google Scholar
  2. 2.
    D. Haitz, Precision Measurements of Proton Structure and Jet Energy Scale with the CMS Detector at the LHC. PhD thesis, KIT (Karlsruher Institut für Technologie), Jun, 2016Google Scholar
  3. 3.
    J. Chadwick, Possible existence of a neutron. Nature 129, 312 (1932). doi: 10.1038/129312a0 ADSCrossRefGoogle Scholar
  4. 4.
    P.A.M. Dirac, The quantum theory of the electron. Proc. Roy. Soc. Lond. A 117, 610 (1928). doi: 10.1098/rspa.1928.0023 ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    C.D. Anderson, The positive electron. Phys. Rev. 43, 491 (1933). doi: 10.1103/PhysRev.43.491 ADSCrossRefGoogle Scholar
  6. 6.
    S.H. Neddermeyer, C.D. Anderson, Note on the nature of cosmic ray particles. Phys. Rev. 51, 884 (1937). doi: 10.1103/PhysRev.51.884 ADSCrossRefGoogle Scholar
  7. 7.
    H. Yukawa, On the interaction of elementary particles I. Proc. Phys. Math. Soc. Jap. 17, 48 (1935). doi: 10.1143/PTPS.1.1 zbMATHGoogle Scholar
  8. 8.
    C.M.G. Lattes, G.P.S. Occhialini, C.F. Powell, Observations on the tracks of slow mesons in photographic emulsions. 1. Nature 160, 453 (1947). doi: 10.1038/160453a0 ADSCrossRefGoogle Scholar
  9. 9.
    C.M.G. Lattes, G.P.S. Occhialini, C.F. Powell, Observations on the tracks of slow mesons in photographic emulsions. 2. Nature 160, 486 (1947). doi: 10.1038/160486a0 ADSCrossRefGoogle Scholar
  10. 10.
    R. Cahn, G. Goldhaber, The Experimental Foundations of Particle Physics, 2nd edn. (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  11. 11.
    V.E. Barnes et al., Observation of a hyperon with strangeness -3. Phys. Rev. Lett. 12, 204 (1964). doi: 10.1103/PhysRevLett.12.204 ADSCrossRefGoogle Scholar
  12. 12.
    M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214 (1964). doi: 10.1016/S0031-9163(64)92001-3 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Zweig, An SU \(_3\) model for strong interaction symmetry and its breaking; Version 1. Technical report, CERN-TH-401, CERN, Geneva, 1964Google Scholar
  14. 14.
    G. Zweig, An SU \(_3\) model for strong interaction symmetry and its breaking; Version 2. Technical report, CERN-TH-412, CERN, Geneva, 1964Google Scholar
  15. 15.
    M. Gell-Mann, Quarks, color, and QCD, in Proceedings, Workshop on QCD—20 Years Later, vol. C920609, p. 3. Aachen, Germany, 9–13 June 1992Google Scholar
  16. 16.
    Creative Commons License. CC-BY-SA-3.0,
  17. 17.
    E.D. Bloom et al., High-energy inelastic \(ep\) scattering at 6-degrees and 10-degrees. Phys. Rev. Lett. 23, 930 (1969). doi: 10.1103/PhysRevLett.23.930 ADSCrossRefGoogle Scholar
  18. 18.
    M. Breidenbach et al., Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett. 23, 935 (1969). doi: 10.1103/PhysRevLett.23.935 ADSCrossRefGoogle Scholar
  19. 19.
    J.D. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547 (1969). doi: 10.1103/PhysRev.179.1547 ADSCrossRefGoogle Scholar
  20. 20.
    G. ’t Hooft, M.J.G. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44 (1972) 189. doi: 10.1016/0550-3213(72)90279-9
  21. 21.
    H. Fritzsch, M. Gell-Mann, Current algebra: quarks and what else?, in Proceedings, 16th International Conference on High-Energy Physics (ICHEP), vol. C720906V2, p. 135. Batavia, IL, USA, 6–13 Sept 1972, arXiv:hep-ph/0208010
  22. 22.
    O.W. Greenberg, Spin and unitary spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett. 13, 598 (1964). doi: 10.1103/PhysRevLett.13.598 ADSCrossRefGoogle Scholar
  23. 23.
    M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067 (1962). doi: 10.1103/PhysRev.125.1067 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343 (1973). doi: 10.1103/PhysRevLett.30.1343 ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D 8, 3633 (1973). doi: 10.1103/PhysRevD.8.3633 ADSCrossRefGoogle Scholar
  26. 26.
    D.J. Gross, F. Wilczek, Asymptotically free gauge theories. 2. Phys. Rev. D 9, 980 (1974). doi: 10.1103/PhysRevD.9.980 ADSCrossRefGoogle Scholar
  27. 27.
    H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973). doi: 10.1103/PhysRevLett.30.1346 ADSCrossRefGoogle Scholar
  28. 28.
    K.A. Olive and others (Particle Data Group), Review of particle physics. Chin. Phys. C 38 (2014) 090001. doi: 10.1088/1674-1137/38/9/090001
  29. 29.
    JabRef Development Team, JabRef (2003), Accessed 24 May 2016
  30. 30.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Frontiers in Physics) (Westview Press, Boulder, CO, 1995)Google Scholar
  31. 31.
    I.J. Aitchison, A.J. Hey, Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volume set. 4th edn. 12 (CRC Press, 2012)Google Scholar
  32. 32.
    G.F. Sterman, An Introduction to Quantum Field Theory (Cambridge University Press, 1993)Google Scholar
  33. 33.
    C. Itzykson, J.-B. Zuber, Quantum Field Theory (Dover Publications, 2006)Google Scholar
  34. 34.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields, 1st edn. (Mcgraw-Hill College, 1965)Google Scholar
  35. 35.
    G. Dissertori, I.G. Knowles, M. Schmelling, Quantum Chromodynamics: High Energy Experiments and Theory, 2nd edn. (Oxford University Press, 2009)Google Scholar
  36. 36.
    F.J. Ynduráin, The Theory of Quark and Gluon Interactions, 4th edn. Texts and monographs in physics (Springer, Berlin, 2006)Google Scholar
  37. 37.
    R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Nuclear Physics and Cosmology) (Cambridge University Press, Cambridge, Cambridge Monographs on Particle Physics, 1996)CrossRefGoogle Scholar
  38. 38.
    Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troian, Basics of Perturbative QCD. Editions Frontieres, Dec 1991Google Scholar
  39. 39.
    T. Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods in Gauge Theories (World Scientific, 1987)Google Scholar
  40. 40.
    CTEQ Collaboration, Handbook of perturbative QCD. Rev. Mod. Phys. 67, 157 (1995). doi: 10.1103/RevModPhys.67.157
  41. 41.
    D.W. Duke, R.G. Roberts, Determinations of the QCD strong coupling \(\alpha _s\) and the scale \(\varLambda _{\rm{QCD}}\). Phys. Rept. 120, 275 (1985). doi: 10.1016/0370-1573(85)90112-7 ADSCrossRefGoogle Scholar
  42. 42.
    G. Altarelli, Partons in quantum chromodynamics. Phys. Rept. 81, 1 (1982). doi: 10.1016/0370-1573(82)90127-2
  43. 43.
    A.H. Mueller, Perturbative QCD at high-energies. Phys. Rept. 73, 237 (1981). doi: 10.1016/0370-1573(81)90030-2
  44. 44.
    R.P. Feynman, Photon-Hadron Interactions (Westview Press, 1998)Google Scholar
  45. 45.
    J. Collins, Foundations of Perturbative QCD, Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, Cambridge Monographs on Particle Physics, 2011)CrossRefGoogle Scholar
  46. 46.
    S. Moch, Hard QCD at hadron colliders. J. Phys. G 35, 073001 (2008). doi: 10.1088/0954-3899/35/7/073001. arXiv:0803.0457 ADSCrossRefGoogle Scholar
  47. 47.
    J.M. Campbell, J.W. Huston, W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics. Rept. Prog. Phys. 70, 89 (2007). doi: 10.1088/0034-4885/70/1/R02. arXiv:hep-ph/0611148 ADSCrossRefGoogle Scholar
  48. 48.
    R. Alemany-Fernandez et al., The Large Hadron Collider: Harvest of Run 1, 1st edn. (Springer, Berlin, Germany, 2015)Google Scholar
  49. 49.
    R.M. Barnett et al., Physics at the Terascale, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011)Google Scholar
  50. 50.
    H. Fritzsch, M. Gell-Mann (eds.), 50 Years of Quarks (World Scientific Publishing Co. Pte. Ltd., 2015)Google Scholar
  51. 51.
    P.M. Zerwas, H.A. Kastrup (eds.), QCD: 20 Years Later: Aachen, June 9–13, 1992) (World Scientific Publishing Co. Pte. Ltd., 1993)Google Scholar
  52. 52.
    D. Binosi, L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Comput. Phys. Commun. 161, 76 (2004). doi: 10.1016/j.cpc.2004.05.001. arXiv:hep-ph/0309015 ADSCrossRefGoogle Scholar
  53. 53.
    L.D. Faddeev, V.N. Popov, Feynman diagrams for the yang-mills field. Phys. Lett. B 25, 29 (1967). doi: 10.1016/0370-2693(67)90067-6 ADSCrossRefGoogle Scholar
  54. 54.
    R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440 (1977). doi: 10.1103/PhysRevLett.38.1440 ADSCrossRefGoogle Scholar
  55. 55.
    R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 16, 1791 (1977). doi: 10.1103/PhysRevD.16.1791 ADSCrossRefGoogle Scholar
  56. 56.
    G. ’t Hooft, The Glorious days of physics: renormalization of gauge theories, arXiv:hep-th/9812203
  57. 57.
    T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four-loop \(\beta \)-function in quantum chromodynamics. Phys. Lett. B 400, 379 (1997). doi: 10.1016/S0370-2693(97)00370-5. arXiv:hep-ph/9701390 ADSCrossRefGoogle Scholar
  58. 58.
    G. ’t Hooft, Dimensional regularization and the renormalization group. Nucl. Phys. B 61 (1973) 455. doi: 10.1016/0550-3213(73)90376-3
  59. 59.
    W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D 18, 3998 (1978). doi: 10.1103/PhysRevD.18.3998 ADSCrossRefGoogle Scholar
  60. 60.
    J. Beringer and others (Particle Data Group), Review of particle physics. Phys. Rev. D 86 (2012) 010001. doi: 10.1103/PhysRevD.86.010001
  61. 61.
    S. Durr et al., Ab-Initio Determination of Light Hadron Masses. Science 322, 1224 (2008). doi: 10.1126/science.1163233. arXiv:0906.3599 ADSCrossRefGoogle Scholar
  62. 62.
    J.C. Collins, D.E. Soper, G. Sterman, Factorization of Hard Processes in QCD, volume 5 of Advanced Series on Directions in High Energy Physics, Ch. 1, p. 1, (World Scientific Pub Co Inc, 1988), arXiv:hep-ph/0409313. doi: 10.1142/9789814503266_0001
  63. 63.
    J.R. Andersen et al., Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report, arXiv:1405.1067
  64. 64.
    S. Dittmaier, A. Huss, C. Speckner, Weak radiative corrections to dijet production at hadron colliders. JHEP 11, 095 (2012). doi: 10.1007/JHEP11(2012)095. arXiv:1210.0438 ADSCrossRefGoogle Scholar
  65. 65.
    V.N. Gribov, L.N. Lipatov, Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972)Google Scholar
  66. 66.
    L.N. Lipatov, The parton model and perturbation theory. Sov. J. Nucl. Phys. 20 (1975) 94. [Yad. Fiz.20,181(1974)]Google Scholar
  67. 67.
    G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language. Nucl. Phys. B 126, 298 (1977). doi: 10.1016/0550-3213(77)90384-4 ADSCrossRefGoogle Scholar
  68. 68.
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics. Sov. Phys. JETP 46, 641 (1977)ADSGoogle Scholar
  69. 69.
    S. Moch, J.A.M. Vermaseren, A. Vogt, The three loop splitting functions in QCD: the nonsinglet case. Nucl. Phys. B 688, 101 (2004). doi: 10.1016/j.nuclphysb.2004.03.030. arXiv:hep-ph/0403192 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    A. Vogt, S. Moch, J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B 691, 129 (2004). doi: 10.1016/j.nuclphysb.2004.04.024. arXiv:hep-ph/0404111 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, The pomeranchuk singularity in nonabelian gauge theories. Sov. Phys. JETP 45 (1977) 199. [Zh. Eksp. Teor. Fiz.72,377(1977)]Google Scholar
  72. 72.
    I.I. Balitsky, L.N. Lipatov, The pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28 (1978) 822. [Yad. Fiz.28,1597(1978)]Google Scholar
  73. 73.
    W.J. Stirling, Parton luminosity and cross section plots. Private communication, 2016.
  74. 74.
    C. Buttar et al., The QCD, EW, and Higgs Working Group: Summary Report, in Proceedings, 4th Les Houches Workshop 2005 on Physics at TeV colliders (Les Houches 2005). Les Houches, France, 2-20 May 2005. arXiv:hep-ph/0604120
  75. 75.
    S.D. Drell, T.-M. Yan, Partons and their applications at high-energies. Annals Phys. 66, 578 (1971). doi: 10.1016/0003-4916(71)90071-6 ADSCrossRefGoogle Scholar
  76. 76.
    S.M. Berman, J.D. Bjorken, J.B. Kogut, Inclusive processes at high transverse momentum. Phys. Rev. D 4, 3388 (1971). doi: 10.1103/PhysRevD.4.3388 ADSCrossRefGoogle Scholar
  77. 77.
    F. Halzen, D.M. Scott, energy flow: testing QCD without structure functions, in Proceedings, 11th International Symposium on Multiparticle Dynamics (ISMD), p. 0593. Bruges, Belgium, 22-27 June 1980Google Scholar
  78. 78.
    S.D. Drell, D.J. Levy, T.-M. Yan, A theory of deep-inelastic lepton-nucleon scattering and lepton-pair annihilation processes. I. Phys. Rev. 187, 2159 (1969). doi: 10.1103/PhysRev.187.2159 ADSCrossRefGoogle Scholar
  79. 79.
    S.D. Drell, D.J. Levy, T.-M. Yan, A theory of deep-inelastic lepton-nucleon scattering and lepton-pair annihilation processes. III. deep-inelastic electron-positron annihilation. Phys. Rev. D 1, 1617 (1970). doi: 10.1103/PhysRevD.1.1617 ADSCrossRefGoogle Scholar
  80. 80.
    N. Cabibbo, G. Parisi, M. Testa, Hadron production in \(e^+e^-\) collisions. Lett. Nuovo Cim. 4S1 (1970) 35. doi: 10.1007/BF02755392. [Lett. Nuovo Cim.4,35(1970)]
  81. 81.
    J.D. Bjorken, S.J. Brodsky, Statistical model for electron-positron annihilation Into hadrons. Phys. Rev. D 1, 1416 (1970). doi: 10.1103/PhysRevD.1.1416 ADSCrossRefGoogle Scholar
  82. 82.
    R.P. Feynman, R.D. Field, G.C. Fox, Quantum-chromodynamic approach for the large-transverse- momentum production of particles and jets. Phys. Rev. D 18, 3320 (1978). doi: 10.1103/PhysRevD.18.3320 ADSCrossRefGoogle Scholar
  83. 83.
    A.V. Belitsky, G.P. Korchemsky, G.F. Sterman, Energy flow in QCD and event shape functions. Phys. Lett. B 515, 297 (2001). doi: 10.1016/S0370-2693(01)00899-1. arXiv:hep-ph/0106308 ADSCrossRefGoogle Scholar
  84. 84.
    A. Ali, G. Kramer, Jets and QCD: a historical review of the discovery of the quark and gluon jets and its impact on QCD. Eur. Phys. J. H 36, 245 (2011). doi: 10.1140/epjh/e2011-10047-1. arXiv:1012.2288 CrossRefGoogle Scholar
  85. 85.
    P. Söding, On the discovery of the gluon. Eur. Phys. J. H 35, 3 (2010). doi: 10.1140/epjh/e2010-00002-5 ADSCrossRefGoogle Scholar
  86. 86.
    B.R. Stella, H.-J. Meyer, Y(9.46 GeV) and the gluon discovery (a critical recollection of PLUTO results). Eur. Phys. J. H 36, 203 (2011). doi: 10.1140/epjh/e2011-10029-3. arXiv:1008.1869 CrossRefGoogle Scholar
  87. 87.
    ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716 (2012) 1. doi: 10.1016/j.physletb.2012.08.020, arXiv:1207.7214
  88. 88.
    CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). doi: 10.1016/j.physletb.2012.08.021. arXiv:1207.7235
  89. 89.
    CDF Collaboration, Observation of top quark production in \(\bar{p}p\) collisions. Phys. Rev. Lett. 74, 2626 (1995). doi: 10.1103/PhysRevLett.74.2626. arXiv:hep-ex/9503002
  90. 90.
    D0 Collaboration, Observation of the top quark. Phys. Rev. Lett. 74, 2632 (1995). doi: 10.1103/PhysRevLett.74.2632. arXiv:hep-ex/9503003
  91. 91.
    H.U. Bengtsson, The Lund Monte Carlo for high \(p_T\) physics. Comput. Phys. Commun. 31, 323 (1984). doi: 10.1016/0010-4655(84)90018-3 ADSCrossRefGoogle Scholar
  92. 92.
    T. Sjöstrand, The Lund Monte Carlo for jet fragmentation. Comput. Phys. Commun. 27, 243 (1982). doi: 10.1016/0010-4655(82)90175-8
  93. 93.
    T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74 (1994). doi: 10.1016/0010-4655(94)90132-5 ADSCrossRefGoogle Scholar
  94. 94.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 Physics and Manual. JHEP 05 (2006) 026. doi: 10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175
  95. 95.
    G. Marchesini, B.R. Webber, Monte carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310, 461 (1988). doi: 10.1016/0550-3213(88)90089-2 ADSCrossRefGoogle Scholar
  96. 96.
    G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 - April 1991. Comput. Phys. Commun. 67, 465 (1992). doi: 10.1016/0010-4655(92)90055-4 ADSzbMATHCrossRefGoogle Scholar
  97. 97.
    G. Corcella et al., HERWIG 6: an Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP 01, 010 (2001). doi: 10.1088/1126-6708/2001/01/010. arXiv:hep-ph/0011363 ADSCrossRefGoogle Scholar
  98. 98.
    G. Corcella et al., HERWIG 6.5 release note, arXiv:hep-ph/0210213
  99. 99.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, A. Brief, Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). doi: 10.1016/j.cpc.2008.01.036. arXiv:0710.3820 ADSzbMATHCrossRefGoogle Scholar
  100. 100.
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). doi: 10.1016/j.cpc.2015.01.024. arXiv:1410.3012 ADSzbMATHCrossRefGoogle Scholar
  101. 101.
    M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008). doi: 10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883 ADSCrossRefGoogle Scholar
  102. 102.
    J. Bellm et al., Herwig 7.0 / Herwig++ 3.0 Release Note, arXiv:1512.01178
  103. 103.
    T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02 (2009) 007. doi: 10.1088/1126-6708/2009/02/007, arXiv:0811.4622
  104. 104.
    A. Buckley et al., General-purpose event generators for LHC physics. Phys. Rept. 504, 145 (2011). doi: 10.1016/j.physrep.2011.03.005. arXiv:1101.2599 ADSCrossRefGoogle Scholar
  105. 105.
    S. Gieseke, Z. Nagy, Monte Carlo Generators and Fixed-order Calculations: Predicting the (Un)Expected, 1st edn. Ch. 5, p. 97. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, April, 2011. doi: 10.1002/9783527634965.ch5
  106. 106.
    S. Gieseke, Simulation of jets at colliders. Prog. Part. Nucl. Phys. 72, 155 (2013). doi: 10.1016/j.ppnp.2013.04.001 ADSCrossRefGoogle Scholar
  107. 107.
    S. Höche, Introduction to parton-shower event generators, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014). Boulder, CO, USA, 2–27 June 2014. arXiv:1411.4085
  108. 108.
    M.A. Dobbs et al., Les Houches guidebook to Monte Carlo generators for hadron collider physics, in Proceedings, 3rd Les Houches Workshop 2003 on Physics at TeV colliders (Les Houches 2003), p. 411. Les Houches, France, May 26–June 2, 2003. arXiv:hep-ph/0403045
  109. 109.
    I.G. Knowles, A linear algorithm for calculating spin correlations in hadronic collisions. Comput. Phys. Commun. 58, 271 (1990). doi: 10.1016/0010-4655(90)90063-7 ADSCrossRefGoogle Scholar
  110. 110.
    I.G. Knowles, Spin correlations in parton–parton scattering. Nucl. Phys. B 310, 571 (1988). doi: 10.1016/0550-3213(88)90092-2 ADSCrossRefGoogle Scholar
  111. 111.
    M. Bengtsson, T. Sjöstrand, A comparative study of coherent and noncoherent parton shower evolution. Nucl. Phys. B 289, 810 (1987). doi: 10.1016/0550-3213(87)90407-X ADSCrossRefGoogle Scholar
  112. 112.
    M. Bengtsson, T. Sjöstrand, Coherent parton showers versus matrix elements: implications of PETRA - PEP Data. Phys. Lett. B 185, 435 (1987). doi: 10.1016/0370-2693(87)91031-8 ADSCrossRefGoogle Scholar
  113. 113.
    T. Sjöstrand, P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C 39, 129 (2005). doi: 10.1140/epjc/s2004-02084-y. arXiv:hep-ph/0408302 ADSCrossRefGoogle Scholar
  114. 114.
    S. Gieseke, P. Stephens, B. Webber, New formalism for QCD parton showers. JHEP 12, 045 (2003). doi: 10.1088/1126-6708/2003/12/045. arXiv:hep-ph/0310083 ADSCrossRefGoogle Scholar
  115. 115.
    J.-C. Winter, F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines. JHEP 07, 040 (2008). doi: 10.1088/1126-6708/2008/07/040. arXiv:0712.3913 ADSCrossRefGoogle Scholar
  116. 116.
    S. Schumann, F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 03, 038 (2008). doi: 10.1088/1126-6708/2008/03/038. arXiv:0709.1027 ADSCrossRefGoogle Scholar
  117. 117.
    G. Gustafson, U. Pettersson, Dipole formulation of QCD cascades. Nucl. Phys. B 306, 746 (1988). doi: 10.1016/0550-3213(88)90441-5 ADSCrossRefGoogle Scholar
  118. 118.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rept. 97, 31 (1983). doi: 10.1016/0370-1573(83)90080-7 ADSCrossRefGoogle Scholar
  119. 119.
    B. Andersson, G. Gustafson, B. Söderberg, A general model for jet fragmentation. Z. Phys. C 20, 317 (1983). doi: 10.1007/BF01407824 ADSCrossRefGoogle Scholar
  120. 120.
    T. Sjöstrand, The merging of jets. Phys. Lett. B 142, 420 (1984). doi: 10.1016/0370-2693(84)91354-6 ADSCrossRefGoogle Scholar
  121. 121.
    B.R. Webber, A QCD Model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492 (1984). doi: 10.1016/0550-3213(84)90333-X ADSCrossRefGoogle Scholar
  122. 122.
    J.-C. Winter, F. Krauss, G. Soff, A modified cluster hadronization model. Eur. Phys. J. C 36, 381 (2004). doi: 10.1140/epjc/s2004-01960-8. arXiv:hep-ph/0311085 ADSCrossRefGoogle Scholar
  123. 123.
    CDF Collaboration, Charged jet evolution and the underlying event in \(p\bar{p}\) collisions at 1.8 TeV. Phys. Rev. D 65, 092002 (2002). doi: 10.1103/PhysRevD.65.092002
  124. 124.
    CDF Collaboration, The underlying event in hard interactions at the Tevatron \(\bar{p}p\) collider. Phys. Rev. D 70, 072002 (2004). doi: 10.1103/PhysRevD.70.072002. arXiv:hep-ex/0404004
  125. 125.
    CDF Collaboration, Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron. Phys. Rev. D 82, 034001 (2010). doi: 10.1103/PhysRevD.82.034001. arXiv:1003.3146
  126. 126.
    CDF Collaboration, Study of the energy dependence of the underlying event in proton-antiproton collisions. Phys. Rev. D 92, 092009 (2015). doi: 10.1103/PhysRevD.92.092009. arXiv:1508.05340
  127. 127.
    ATLAS Collaboration, Measurement of underlying event characteristics using charged particles in \(pp\) collisions at \(\sqrt{s} = 900\,\) GeV and 7 TeV with the ATLAS detector. Phys. Rev. D 83 (2011) 112001. doi: 10.1103/PhysRevD.83.112001, arXiv:1012.0791
  128. 128.
    ATLAS Collaboration, Measurements of underlying-event properties using neutral and charged particles in \(pp\) collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC. Eur. Phys. J. C 71 (2011) 1636. doi: 10.1140/epjc/s10052-011-1636-z, arXiv:1103.1816
  129. 129.
    ATLAS Collaboration, Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector. Eur. Phys. J. C 74 (2014) 2965. doi: 10.1140/epjc/s10052-014-2965-5, arXiv:1406.0392
  130. 130.
    ATLAS Collaboration, Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C 74 (2014) 319. doi: 10.1140/epjc/s10052-014-3195-6, arXiv:1409.3433
  131. 131.
    CMS Collaboration, First measurement of the underlying event activity at the LHC with \(\sqrt{s} = 0.9\) TeV. Eur. Phys. J. C 70, 555 (2010). doi: 10.1140/epjc/s10052-010-1453-9. arXiv:1006.2083
  132. 132.
    CMS Collaboration, Measurement of the underlying event activity at the LHC with \(\sqrt{s}= 7\) TeV and comparison with \(\sqrt{s} = 0.9\) TeV. JHEP 09 (2011) 109. doi: 10.1007/JHEP09(2011)109, arXiv:1107.0330
  133. 133.
    CMS Collaboration, Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at \(\sqrt{s}=7\) TeV. Eur. Phys. J. C 72, 2080 (2012). doi: 10.1140/epjc/s10052-012-2080-4. arXiv:1204.1411
  134. 134.
    CMS Collaboration, Study of the underlying event at forward rapidity in pp collisions at \(\sqrt{s} =\) 0.9, 2.76, and 7 TeV. JHEP 04 (2013) 072. doi: 10.1007/JHEP04(2013)072, arXiv:1302.2394
  135. 135.
    CMS Collaboration, Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at \(\sqrt{s} = 2.76\,\)TeV. JHEP 09 (2015) 137. doi: 10.1007/JHEP09(2015)137, arXiv:1507.07229
  136. 136.
    ALICE Collaboration, Underlying Event measurements in \(pp\) collisions at \(\sqrt{s}=0.9\) and 7 TeV with the ALICE experiment at the LHC. JHEP 07 (2012) 116. doi: 10.1007/JHEP07(2012)116, arXiv:1112.2082
  137. 137.
    D. Piparo, Statistical Combination of Higgs Decay Channels and Determination of the Jet-Energy Scale of the CMS Experiment at the LHC. PhD thesis, KIT (Karlsruher Institut für Technologie), Nov 2010Google Scholar
  138. 138.
    T. Sjöstrand, M. van Zijl, A multiple interaction model for the event structure in hadron collisions. Phys. Rev. D 36, 2019 (1987). doi: 10.1103/PhysRevD.36.2019 ADSCrossRefGoogle Scholar
  139. 139.
    T. Sjöstrand, P.Z. Skands, Multiple interactions and the structure of beam remnants. JHEP 03, 053 (2004). doi: 10.1088/1126-6708/2004/03/053. arXiv:hep-ph/0402078 ADSCrossRefGoogle Scholar
  140. 140.
    M. Bähr, S. Gieseke, M.H. Seymour, Simulation of multiple partonic interactions in Herwig++. JHEP 07, 076 (2008). doi: 10.1088/1126-6708/2008/07/076. arXiv:0803.3633 CrossRefGoogle Scholar
  141. 141.
    A. Buckley et al., Rivet user manual. Comput. Phys. Commun. 184, 2803 (2013). doi: 10.1016/j.cpc.2013.05.021. arXiv:1003.0694 ADSCrossRefGoogle Scholar
  142. 142.
    A. Buckley et al., Systematic event generator tuning for the LHC. Eur. Phys. J. C 65, 331 (2010). doi: 10.1140/epjc/s10052-009-1196-7. arXiv:0907.2973 ADSCrossRefGoogle Scholar
  143. 143.
    H. Abramowicz et al., Summary of the Workshop on Multi-Parton Interactions (MPI@LHC 2012), arXiv:1306.5413
  144. 144.
    S. Plätzer, M. Diehl (eds.), in Proceedings of the 3rd International Workshop on Multiple Partonic Interactions at the LHC (MPI@LHC 2011), Hamburg, Germany, 21–25 Nov, DESY. DESY, Hamburg, Germany, (2011). doi: 10.3204/DESY-PROC-2012-03
  145. 145.
    P. Bartalini, L. Fanó (eds.), in Proceedings of the 1st International Workshop on Multiple Partonic Interactions at the LHC (MPI@LHC 2008), Perugia, Italy, 27–31 Oct (2008). arXiv:1003.4220
  146. 146.
    CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2015). doi: 10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815
  147. 147.
    CDF Collaboration, R. Field, The Energy Dependence of the Underlying Event in Hadronic Collisions, in Proceedings, The 2013 European Physical Society Conference on High Energy Physics (EPS-HEP 2013), volume EPS-HEP2013, p. 422. Stockholm, Sweden, 18-24 July 2013Google Scholar
  148. 148.
    ATLAS Collaboration, New ATLAS event generator tunes to 2010 data, Technical report ATL-PHYS-PUB-2011-008, CERN, Geneva, 2011Google Scholar
  149. 149.
    P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes. Phys. Rev. D 82, 074018 (2010). doi: 10.1103/PhysRevD.82.074018. arXiv:1005.3457 ADSCrossRefGoogle Scholar
  150. 150.
    J.M. Katzy, QCD Monte-Carlo model tunes for the LHC. Prog. Part. Nucl. Phys. 73, 141 (2013). doi: 10.1016/j.ppnp.2013.08.002 ADSCrossRefGoogle Scholar
  151. 151.
    S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. JHEP 11, 063 (2001). doi: 10.1088/1126-6708/2001/11/063. arXiv:hep-ph/0109231 ADSCrossRefGoogle Scholar
  152. 152.
    F. Krauss, Matrix elements and parton showers in hadronic interactions. JHEP 08, 015 (2002). doi: 10.1088/1126-6708/2002/08/015. arXiv:hep-ph/0205283 ADSCrossRefGoogle Scholar
  153. 153.
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements. JHEP 05, 046 (2002). doi: 10.1088/1126-6708/2002/05/046. arXiv:hep-ph/0112284 CrossRefGoogle Scholar
  154. 154.
    M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP 01, 013 (2007). doi: 10.1088/1126-6708/2007/01/013. arXiv:hep-ph/0611129 ADSCrossRefGoogle Scholar
  155. 155.
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473 (2008). doi: 10.1140/epjc/s10052-007-0490-5. arXiv:0706.2569 ADSCrossRefGoogle Scholar
  156. 156.
    S. Catani, M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD. Nucl. Phys. B 485, 291 (1997). doi: 10.1016/S0550-3213(96)00589-5. arXiv:hep-ph/9605323 ADSCrossRefGoogle Scholar
  157. 157.
    S. Frixione, Z. Kunszt, A. Signer, Three jet cross-sections to next-to-leading order. Nucl. Phys. B 467, 399 (1996). doi: 10.1016/0550-3213(96)00110-1. arXiv:hep-ph/9512328 ADSCrossRefGoogle Scholar
  158. 158.
    D.A. Kosower, Antenna factorization of gauge theory amplitudes. Phys. Rev. D 57, 5410 (1998). doi: 10.1103/PhysRevD.57.5410. arXiv:hep-ph/9710213 ADSCrossRefGoogle Scholar
  159. 159.
    Z. Nagy, D.E. Soper, General subtraction method for numerical calculation of one-loop QCD matrix elements. JHEP 09, 055 (2003). doi: 10.1088/1126-6708/2003/09/055. arXiv:hep-ph/0308127 ADSCrossRefGoogle Scholar
  160. 160.
    S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. JHEP 06, 029 (2002). doi: 10.1088/1126-6708/2002/06/029. arXiv:hep-ph/0204244 ADSCrossRefGoogle Scholar
  161. 161.
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). doi: 10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146 ADSCrossRefGoogle Scholar
  162. 162.
    S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 11, 070 (2007). doi: 10.1088/1126-6708/2007/11/070. arXiv:0709.2092 ADSCrossRefGoogle Scholar
  163. 163.
    S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). doi: 10.1007/JHEP06(2010)043. arXiv:1002.2581 ADSzbMATHCrossRefGoogle Scholar
  164. 164.
    S. Höche, F. Krauss, M. Schönherr, F. Siegert, A critical appraisal of NLO+PS matching methods. JHEP 09, 049 (2012). doi: 10.1007/JHEP09(2012)049. arXiv:1111.1220 CrossRefGoogle Scholar
  165. 165.
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). doi: 10.1007/JHEP07(2014)079. arXiv:1405.0301 ADSCrossRefGoogle Scholar
  166. 166.
    K. Hamilton, P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements. JHEP 06, 039 (2010). doi: 10.1007/JHEP06(2010)039. arXiv:1004.1764 ADSCrossRefGoogle Scholar
  167. 167.
    S. Höche, F. Krauss, M. Schönherr, F. Siegert, NLO matrix elements and truncated showers. JHEP 08, 123 (2011). doi: 10.1007/JHEP08(2011)123. arXiv:1009.1127 ADSCrossRefGoogle Scholar
  168. 168.
    S. Höche, F. Krauss, M. Schönherr, F. Siegert, QCD matrix elements + parton showers: the NLO case. JHEP 04, 027 (2013). doi: 10.1007/JHEP04(2013)027. arXiv:1207.5030 CrossRefGoogle Scholar
  169. 169.
    L. Lönnblad, S. Prestel, Merging multi-leg NLO matrix elements with parton showers. JHEP 03, 166 (2013). doi: 10.1007/JHEP03(2013)166. arXiv:1211.7278 ADSCrossRefGoogle Scholar
  170. 170.
    K. Hamilton, P. Nason, C. Oleari, G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching. JHEP 05, 082 (2013). doi: 10.1007/JHEP05(2013)082. arXiv:1212.4504 ADSCrossRefGoogle Scholar
  171. 171.
    S. Höche et al., Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower. Phys. Lett. B 748, 74 (2015). doi: 10.1016/j.physletb.2015.06.060. arXiv:1402.6293 ADSCrossRefGoogle Scholar
  172. 172.
    G.F. Sterman, S. Weinberg, Jets from quantum chromodynamics. Phys. Rev. Lett. 39, 1436 (1977). doi: 10.1103/PhysRevLett.39.1436 ADSCrossRefGoogle Scholar
  173. 173.
    JADE Collaboration, Experimental studies on multi-jet production in e+ e- annihilation at PETRA energies. Z. Phys. C 33, 23 (1986). doi: 10.1007/BF01410449
  174. 174.
    B. Flaugher and K. Meier, A Compilation of jet finding algorithms, in Proceedings, 5th DPF Summer Study on High-energy Physics: Research Directions for the Decade (Snowmass 90), p. 128. Snowmass, CO, USA, June 25–July 13, 1990Google Scholar
  175. 175.
    J. E. Huth et al., Towards a standardization of jet definitions, in Proceedings, 5th DPF Summer Study on High-energy Physics: Research Directions for the Decade (Snowmass 90), p. 134. Snowmass, CO, USA, June 25–July 13, 1990Google Scholar
  176. 176.
    G.C. Blazey et al., Run II jet physics, in Proceedings, Physics at Run II: QCD and Weak Boson Physics Workshop, p. 47. Batavia, IL, USA, March 4–6, June 3–4, November 4–6, 1999. arXiv:hep-ex/0005012
  177. 177.
    C. Buttar et al., Standard Model Handles and Candles Working Group: Tools and Jets Summary Report, in Proceedings, 5th Les Houches Workshop 2007 on Physics at TeV colliders (Les Houches 2007), p. 121. Les Houches, France, 11-29 June 2007. arXiv:0803.0678
  178. 178.
    G.P. Salam, Towards jetography. Eur. Phys. J. C 67, 637 (2010). doi: 10.1140/epjc/s10052-010-1314-6. arXiv:0906.1833 ADSCrossRefGoogle Scholar
  179. 179.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). doi: 10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097 ADSCrossRefGoogle Scholar
  180. 180.
    CDF Collaboration, Measurement of the inclusive jet cross section at the Fermilab Tevatron \({p\bar{p}}\) collider using a cone-based jet algorithm. Phys. Rev. D 78, 052006 (2008). doi: 10.1103/PhysRevD.79.119902,  10.1103/PhysRevD.78.052006, arXiv:0807.2204
  181. 181.
    D0 Collaboration, Measurement of the inclusive jet cross section in \(p \bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Rev. D 85 (2012) 052006. doi: 10.1103/PhysRevD.85.052006, arXiv:1110.3771. Long author list—awaiting processing
  182. 182.
    G.P. Salam, G. Soyez, A practical Seedless Infrared-Safe Cone jet algorithm. JHEP 05, 086 (2007). doi: 10.1088/1126-6708/2007/05/086. arXiv:0704.0292 ADSCrossRefGoogle Scholar
  183. 183.
    S. Catani, B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region. JHEP 10, 005 (1997). doi: 10.1088/1126-6708/1997/10/005. arXiv:hep-ph/9710333 ADSCrossRefGoogle Scholar
  184. 184.
    T. Hebbeker, Tests of quantum chromodynamics in hadronic decays of \(Z^0\) bosons produced in \(e^{+} e^{-}\) annihilation. Phys. Rept. 217, 69 (1992). doi: 10.1016/0370-1573(92)90181-X ADSCrossRefGoogle Scholar
  185. 185.
    S. Catani et al., New clustering algorithm for multi - jet cross-sections in e+ e- annihilation. Phys. Lett. B 269, 432 (1991). doi: 10.1016/0370-2693(91)90196-W ADSCrossRefGoogle Scholar
  186. 186.
    M. Dasgupta, L. Magnea, G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders. JHEP 02, 055 (2008). doi: 10.1088/1126-6708/2008/02/055. arXiv:0712.3014 ADSCrossRefGoogle Scholar
  187. 187.
    UA1 Collaboration, Hadronic Jet Production at the CERN Proton-Antiproton Collider. Phys. Lett. B 132, 214 (1983). doi: 10.1016/0370-2693(83)90254-X ADSCrossRefGoogle Scholar
  188. 188.
    UA2 Collaboration, Observation of very large transverse momentum jets at the CERN \(\bar{p}p\) Collider. Phys. Lett. B 118, 203 (1982). doi: 10.1016/0370-2693(82)90629-3 CrossRefGoogle Scholar
  189. 189.
    UA2 Collaboration, Measurement of production and properties of jets at the CERN anti-p p collider. Z. Phys. C 20, 117 (1983). doi: 10.1007/BF01573214 CrossRefGoogle Scholar
  190. 190.
    M. Cacciari, G.P. Salam, Dispelling the \(N^{3}\) myth for the \(k_t\) jet-finder. Phys. Lett. B 641, 57 (2006). doi: 10.1016/j.physletb.2006.08.037. arXiv:hep-ph/0512210 ADSCrossRefGoogle Scholar
  191. 191.
    S.D. Ellis, J. Huston, M. Tönnesmann, On building better cone jet algorithms. eConf C010630 (2001) 513, arXiv:hep-ph/0111434
  192. 192.
    J. Berger, Search for the Higgs Boson Produced via Vector-Boson Fusion in the Decay Channel H \(\rightarrow \tau \tau \). PhD thesis, KIT (Karlsruher Institut für Technologie), Jun, 2014Google Scholar
  193. 193.
    M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets. JHEP 04, 005 (2008). doi: 10.1088/1126-6708/2008/04/005. arXiv:0802.1188 Google Scholar
  194. 194.
    S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48, 3160 (1993). doi: 10.1103/PhysRevD.48.3160. arXiv:hep-ph/9305266 ADSCrossRefGoogle Scholar
  195. 195.
    Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, Better jet clustering algorithms. JHEP 08, 001 (1997). doi: 10.1088/1126-6708/1997/08/001. arXiv:hep-ph/9707323
  196. 196.
    M. Wobisch, T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Proceedings, Monte Carlo Generators for HERA Physics. Hamburg, Germany, 1998–1999, 1998. arXiv:hep-ph/9907280
  197. 197.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_t\) jet clustering algorithm. JHEP 04, 063 (2008). doi: 10.1088/1126-6708/2008/04/063. arXiv:0802.1189 ADSCrossRefGoogle Scholar
  198. 198.
    CMS Collaboration, Measurement of the underlying event activity in \(pp\) collisions at \(\sqrt{s} = 0.9\) and 7 TeV with the novel jet-area/median approach, JHEP 08 (2012) 130. doi: 10.1007/JHEP08(2012)130, arXiv:1207.2392
  199. 199.
    R. Barlow et al., Data Analysis in High Energy Physics, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013)Google Scholar
  200. 200.
    F.I. Olness, D.E. Soper, Correlated theoretical uncertainties for the one-jet inclusive cross section. Phys. Rev. D 81, 035018 (2010). doi: 10.1103/PhysRevD.81.035018. arXiv:0907.5052 ADSCrossRefGoogle Scholar
  201. 201.
    C. Anastasiou, L.J. Dixon, K. Melnikov, F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. Phys. Rev. D 69, 094008 (2004). doi: 10.1103/PhysRevD.69.094008. arXiv:hep-ph/0312266 ADSCrossRefGoogle Scholar
  202. 202.
    M. Cacciari, N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties. JHEP 09, 039 (2011). doi: 10.1007/JHEP09(2011)039. arXiv:1105.5152 ADSCrossRefGoogle Scholar
  203. 203.
    E. Bagnaschi, M. Cacciari, A. Guffanti, L. Jenniches, An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations. JHEP 02, 133 (2015). doi: 10.1007/JHEP02(2015)133. arXiv:1409.5036 ADSCrossRefGoogle Scholar
  204. 204.
    M. Cacciari et al., The t anti-t cross-section at 1.8 TeV and 1.96 TeV: A Study of the systematics due to parton densities and scale dependence. JHEP 04 (2004) 068. doi: 10.1088/1126-6708/2004/04/068, arXiv:hep-ph/0303085
  205. 205.
    A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). doi: 10.1007/JHEP06(2010)038. arXiv:1001.4082 ADSzbMATHCrossRefGoogle Scholar
  206. 206.
    G. Grunberg, Renormalization Group Improved Perturbative QCD. Phys. Lett. B 95, 70 (1980). doi: 10.1016/0370-2693(80)90402-5. [Erratum: Phys. Lett. B110, 501(1982)]
  207. 207.
    J. Kubo, S. Sakakibara, Equivalence of the fastest apparent convergence criterion and the principle of minimal sensitivity in perturbative quantum chromodynamics. Phys. Rev. D 26, 3656 (1982). doi: 10.1103/PhysRevD.26.3656 ADSCrossRefGoogle Scholar
  208. 208.
    P.M. Stevenson, Resolution of the renormalization scheme ambiguity in perturbative QCD. Phys. Lett. B 100, 61 (1981). doi: 10.1016/0370-2693(81)90287-2 ADSCrossRefGoogle Scholar
  209. 209.
    P.M. Stevenson, Optimized perturbation theory. Phys. Rev. D 23, 2916 (1981). doi: 10.1103/PhysRevD.23.2916 ADSCrossRefGoogle Scholar
  210. 210.
    S.J. Brodsky, G.P. Lepage, P.B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics. Phys. Rev. D 28, 228 (1983). doi: 10.1103/PhysRevD.28.228 ADSCrossRefGoogle Scholar
  211. 211.
    S.J. Brodsky, L. Di Giustino, Setting the renormalization scale in QCD: the principle of maximum conformality. Phys. Rev. D 86, 085026 (2012). doi: 10.1103/PhysRevD.86.085026. arXiv:1107.0338 ADSCrossRefGoogle Scholar
  212. 212.
    S.J. Brodsky, M. Mojaza, X.-G. Wu, Systematic scale-setting to all orders: the principle of maximum conformality and commensurate scale relations. Phys. Rev. D 89, 014027 (2014). doi: 10.1103/PhysRevD.89.014027. arXiv:1304.4631 ADSCrossRefGoogle Scholar
  213. 213.
    H.-Y. Bi et al., Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale. Phys. Lett. B 748 (2015) 13–18. doi: 10.1016/j.physletb.2015.06.056, arXiv:1505.04958
  214. 214.
    M. Rubin, G.P. Salam, S. Sapeta, Giant QCD K-factors beyond NLO. JHEP 09, 084 (2010). doi: 10.1007/JHEP09(2010)084. arXiv:1006.2144
  215. 215.
    A. David, G. Passarino, How well can we guess theoretical uncertainties? Phys. Lett. B 726, 266 (2013). doi: 10.1016/j.physletb.2013.08.025. arXiv:1307.1843 ADSCrossRefGoogle Scholar
  216. 216.
    CDF Collaboration, Inclusive jet cross section in \({\bar{p} p}\) collisions at \(\sqrt{s}=1.8\) TeV. Phys. Rev. Lett. 77, 438 (1996). doi: 10.1103/PhysRevLett.77.438. arXiv:hep-ex/9601008
  217. 217.
    J. Huston et al., Large transverse momentum jet production and the gluon distribution inside the proton. Phys. Rev. Lett. 77, 444 (1996). doi: 10.1103/PhysRevLett.77.444. arXiv:hep-ph/9511386 ADSCrossRefGoogle Scholar
  218. 218.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). doi: 10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002 ADSCrossRefGoogle Scholar
  219. 219.
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016). doi: 10.1103/PhysRevD.93.033006. arXiv:1506.07443
  220. 220.
    E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, On the heavy quark content of the nucleon. Phys. Lett. B 291, 325 (1992). doi: 10.1016/0370-2693(92)91053-C ADSCrossRefGoogle Scholar
  221. 221.
    E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Complete O(\(\alpha _s\)) corrections to heavy flavor structure functions in electroproduction. Nucl. Phys. B 392, 162 (1993). doi: 10.1016/0550-3213(93)90201-Y ADSCrossRefGoogle Scholar
  222. 222.
    S. Riemersma, J. Smith, W.L. van Neerven, Rates for inclusive deep inelastic electroproduction of charm quarks at HERA. Phys. Lett. B 347, 143 (1995). doi: 10.1016/0370-2693(95)00036-K. arXiv:hep-ph/9411431 ADSCrossRefGoogle Scholar
  223. 223.
    R. S. Thorne, W.K. Tung, PQCD Formulations with Heavy Quark Masses and Global Analysis, in Proceedings, 4th Workshop on the Implications of HERA for LHC Physics (HERA and the LHC). Geneva, Switzerland, 26–30 May 2008. arXiv:0809.0714
  224. 224.
    N. Arkani-Hamed, T. Han, M. Mangano, L.-T. Wang, Physics Opportunities of a 100 TeV Proton-Proton Collider, arXiv:1511.06495
  225. 225.
    S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). doi: 10.1103/PhysRevD.86.054009. arXiv:1202.2281 ADSCrossRefGoogle Scholar
  226. 226.
    J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-\(Q^2\) corrections. Phys. Rev. D 87, 094012 (2013). doi: 10.1103/PhysRevD.87.094012. arXiv:1212.1702 ADSCrossRefGoogle Scholar
  227. 227.
    H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi: 10.1103/PhysRevD.82.074024. arXiv:1007.2241 ADSCrossRefGoogle Scholar
  228. 228.
    H1 and ZEUS Collaborations, Combined measurement and QCD analysis of the inclusive \(e^\pm p\) scattering cross sections at HERA. J. High Energy Phys. 01, 109 (2010). doi: 10.1007/JHEP01(2010)109. arXiv:0911.0884
  229. 229.
    M. Glück, P. Jimenez-Delgado, E. Reya, Dynamical parton distributions of the nucleon and very small-x physics. Eur. Phys. J. C 53, 355 (2008). doi: 10.1140/epjc/s10052-007-0462-9. arXiv:0709.0614 ADSCrossRefGoogle Scholar
  230. 230.
    M. Glück, P. Jimenez-Delgado, E. Reya, C. Schuck, On the role of heavy flavor parton distributions at high energy colliders. Phys. Lett. B 664, 133 (2008). doi: 10.1016/j.physletb.2008.04.063. arXiv:0801.3618 ADSCrossRefGoogle Scholar
  231. 231.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on \(\alpha _S\) in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C 64, 653 (2009). doi: 10.1140/epjc/s10052-009-1164-2. arXiv:0905.3531 ADSCrossRefGoogle Scholar
  232. 232.
    R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). doi: 10.1016/j.nuclphysb.2011.03.021. arXiv:1101.1300 ADSCrossRefGoogle Scholar
  233. 233.
    R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). doi: 10.1016/j.nuclphysb.2012.10.003. arXiv:1207.1303 ADSCrossRefGoogle Scholar
  234. 234.
    A. Accardi et al., Constraints on large-\(x\) parton distributions from new weak boson production and deep-inelastic scattering data, arXiv:1602.03154
  235. 235.
    H1 and ZEUS Collaborations, Combination of measurements of inclusive deep inelastic \({e^{\pm }p}\) scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C 75 (2015) 580. doi: 10.1140/epjc/s10052-015-3710-4, arXiv:1506.06042
  236. 236.
    P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). doi: 10.1103/PhysRevD.89.074049. arXiv:1403.1852 ADSCrossRefGoogle Scholar
  237. 237.
    L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). doi: 10.1140/epjc/s10052-015-3397-6. arXiv:1412.3989 ADSCrossRefGoogle Scholar
  238. 238.
    NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04 (2015) 040. doi: 10.1007/JHEP04(2015)040, arXiv:1410.8849
  239. 239.
    M.R. Whalley, D. Bourilkov, R.C. Group, The Les Houches Accord PDFs (LHAPDF) and LHAGLUE, in Proceedings, HERA and the LHC: A Workshop on the implications of HERA for LHC physics: Vol. B. Geneva, Switzerland and Hamburg, Germany, 26–27 March, 11–13 Oct, 21–24 March, 2004–2005. arXiv:hep-ph/0508110
  240. 240.
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015). doi: 10.1140/epjc/s10052-015-3318-8. arXiv:1412.7420 ADSCrossRefGoogle Scholar
  241. 241.
    D. Stump et al., Uncertainties of predictions from parton distribution functions. 1. The Lagrange multiplier method. Phys. Rev. D 65, 014012 (2001). doi: 10.1103/PhysRevD.65.014012. arXiv:hep-ph/0101051 ADSCrossRefGoogle Scholar
  242. 242.
    J. Pumplin et al., Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). doi: 10.1103/PhysRevD.65.014013. arXiv:hep-ph/0101032 ADSCrossRefGoogle Scholar
  243. 243.
    W.T. Giele, S. Keller, Implications of hadron collider observables on parton distribution function uncertainties. Phys. Rev. D 58, 094023 (1998). doi: 10.1103/PhysRevD.58.094023. arXiv:hep-ph/9803393 ADSCrossRefGoogle Scholar
  244. 244.
    W.T. Giele, S.A. Keller, D.A. Kosower, Parton distribution function uncertainties, arXiv:hep-ph/0104052
  245. 245.
    NNPDF Collaboration, A determination of parton distributions with faithful uncertainty estimation. Nucl. Phys. B 809 (2009) 1. doi: 10.1016/j.nuclphysb.2008.09.037, arXiv:0808.1231
  246. 246.
    S. Alekhin et al., HERAFitter. Eur. Phys. J. C 75, 304 (2015). doi: 10.1140/epjc/s10052-015-3480-z. arXiv:1410.4412 ADSCrossRefGoogle Scholar
  247. 247.
    M. Botje et al., The PDF4LHC Working Group Interim Recommendations, arXiv:1101.0538
  248. 248.
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G 43, 023001 (2016). doi: 10.1088/0954-3899/43/2/023001. arXiv:1510.03865
  249. 249.
    C. Bourrely, J. Soffer, F. Buccella, A Statistical approach for polarized parton distributions. Eur. Phys. J. C 23, 487 (2002). doi: 10.1007/s100520100855. arXiv:hep-ph/0109160 ADSCrossRefGoogle Scholar
  250. 250.
    C. Bourrely, J. Soffer, New developments in the statistical approach of parton distributions: tests and predictions up to LHC energies. Nucl. Phys. A 941, 307 (2015). doi: 10.1016/j.nuclphysa.2015.06.018. arXiv:1502.02517
  251. 251.
    SM and NLO Multileg Working Group Collaboration, T. Binoth et al., The SM and NLO Multileg Working Group: Summary report, in Proceedings, 6th Les Houches Workshop 2009 on Physics at TeV colliders (Les Houches 2009; dedicated to Thomas Binoth), p. 21. Les Houches, France, 8–26 June 2010. arXiv:1003.1241
  252. 252.
    H.-L. Lai et al., Uncertainty induced by the QCD coupling in the CTEQ global analysis of parton distributions. Phys. Rev. D 82, 054021 (2010). doi: 10.1103/PhysRevD.82.054021. arXiv:1004.4624 ADSCrossRefGoogle Scholar
  253. 253.
    F. Demartin et al., The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders. Phys. Rev. D 82, 014002 (2010). doi: 10.1103/PhysRevD.82.014002. arXiv:1004.0962 ADSCrossRefGoogle Scholar
  254. 254.
    CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \(\sqrt{s}\) = 7 TeV. Eur. Phys. J. C 75, 288 (2015). doi: 10.1140/epjc/s10052-015-3499-1. arXiv:1410.6765
  255. 255.
    S.D. Ellis, Z. Kunszt, D.E. Soper, One-jet inclusive cross section at order \(\alpha _s^3\): quarks and gluons. Phys. Rev. Lett. 64, 2121 (1990). doi: 10.1103/PhysRevLett.64.2121 ADSCrossRefGoogle Scholar
  256. 256.
    S.D. Ellis, Z. Kunszt, D.E. Soper, Two-jet production in hadron collisions at order \(\alpha _s^3\) in QCD. Phys. Rev. Lett. 69, 1496 (1992). doi: 10.1103/PhysRevLett.69.1496 ADSCrossRefGoogle Scholar
  257. 257.
    J. Gao et al., MEKS: a program for computation of inclusive jet cross sections at hadron colliders. Comput. Phys. Commun. 184, 1626 (2013). doi: 10.1016/j.cpc.2013.01.022. arXiv:1207.0513 ADSCrossRefGoogle Scholar
  258. 258.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders. Nucl. Phys. B 403, 633 (1993). doi: 10.1016/0550-3213(93)90365-V. arXiv:hep-ph/9302225 ADSCrossRefGoogle Scholar
  259. 259.
    Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi: 10.1103/PhysRevLett.88.122003. arXiv:hep-ph/0110315 ADSCrossRefGoogle Scholar
  260. 260.
    Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron hadron collisions. Phys. Rev. D 68, 094002 (2003). doi: 10.1103/PhysRevD.68.094002. arXiv:hep-ph/0307268 ADSCrossRefGoogle Scholar
  261. 261.
    J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering. JHEP 01 (2014) 110. doi: 10.1007/JHEP01(2014)110, arXiv:1310.3993
  262. 262.
    Z. Bern et al., Four-jet production at the large hadron collider at next-to-leading order in QCD. Phys. Rev. Lett. 109, 042001 (2012). doi: 10.1103/PhysRevLett.109.042001. arXiv:1112.3940 ADSCrossRefGoogle Scholar
  263. 263.
    S. Badger, B. Biedermann, P. Uwer, V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \(\sqrt{s}=8\) TeV. Phys. Lett. B 718, 965 (2013). doi: 10.1016/j.physletb.2012.11.029. arXiv:1209.0098 ADSCrossRefGoogle Scholar
  264. 264.
    S. Badger, B. Biedermann, P. Uwer, V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC. Phys. Rev. D 89, 034019 (2014). doi: 10.1103/PhysRevD.89.034019. arXiv:1309.6585 ADSCrossRefGoogle Scholar
  265. 265.
    H1 Collaboration, Measurement and QCD analysis of jet cross-sections in deep-inelastic positron-proton collisions at \(\sqrt{s}\) of 300 GeV. Eur. Phys. J. C 19, 289 (2001). doi: 10.1007/s100520100621. arXiv:hep-ex/0010054
  266. 266.
    T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, in 14th International Workshop on Deep Inelastic Scattering (DIS 2006), p. 483. Tsukuba, Japan, 20–24 April 2006. arXiv:hep-ph/0609285. doi: 10.1142/9789812706706_0110
  267. 267.
    T. Carli, G.P. Salam, F. Siegert, A Posteriori inclusion of PDFs in NLO QCD final-state calculations, in HERA and the LHC: A Workshop on the Implications of HERA for LHC Physics (Startup Meeting, CERN, 26–27 March 2004; Working Group Meeting, CERN, 17–21 Jan 2005; Final Meeting 21–24 Mar 2005) CERN. Geneva, Switzerland 11–13, 2005 (2004). arXiv:hep-ph/0510324
  268. 268.
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID Project. Eur. Phys. J. C 66, 503 (2010). doi: 10.1140/epjc/s10052-010-1255-0. arXiv:0911.2985 ADSCrossRefGoogle Scholar
  269. 269.
    D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project, in Proceedings, XX. International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012), p. 217. Bonn, Germany, 26-30 March 2012. arXiv:1208.3641. doi: 10.3204/DESY-PROC-2012-02/165
  270. 270.
    D.A. Britzger, Regularized Unfolding of Jet Cross Sections in Deep-Inelastic \(ep\) Scattering at HERA and Determination of the Strong Coupling Constant. PhD thesis, Universität Hamburg, June, 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Experimental Nuclear PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations