Skip to main content

Protein Ligand Docking Using Simulated Jumping

  • Conference paper
  • First Online:
  • 1650 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9788))

Abstract

Molecular docking is an essential topic of study as it is crucial in numerous biological processes such as signal transduction and gene expression. Computational efforts to predict ligand docking is preferable to costly x-ray crystallography and Nuclear Magnetic Resonance (NMR) yet technology today remains incompetent in exploring vast search spaces for optimal solutions. To create efficient and effective algorithms, research has led to De novo drug design: a technique to extract novel chemical structures from protein banks is largely evolutionary in nature, and has found measurable success in optimal solution searching. A study by Shara Amin in 1999 in her novel method: simulated jumping (SJ) has achieved promising results when tested on combinatorial optimization problems such as the Quadratic Assignment and Asymmetric Travelling Salesman problems. Following her success with SJ, we aim to incorporate SJ into protein ligand docking, another optimization problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ewing, T.J.A., Kuntz, I.D.: J. Comput. Chem. 18, 1175 (1997)

    Google Scholar 

  2. Blundell, T.L.: Structure-based drug design. Nature 384, 23–26 (1996). doi:10.1038/384023a0

    Article  Google Scholar 

  3. Kuntz, I.D.: Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992). doi:10.1126/science.257.5073.1078

    Article  Google Scholar 

  4. Jones, G., Willette, P., Glen, R.C., Leach, A.R., Taylor, R.: J. Mol. Biol. 207, 727 (1997)

    Article  Google Scholar 

  5. Tame, J.R.H.: Scoring functions–the first 100 years. J. Comput. Aided Mol. Des. 19, 445–451 (2005). doi:10.1007/s10822-005-8483-7

    Article  Google Scholar 

  6. Gohlke, H., Klebe, G.: Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chemie – Int. Ed. 41, 2644–2676 (2002)

    Article  Google Scholar 

  7. Cosconati, S., Forli, S., Perryman, A.L., et al.: Virtual screening with AutoDock: theory and practice. Expert Opin. Drug Discov. 5, 597–607 (2010). doi:10.1517/17460441.2010.484460

    Article  Google Scholar 

  8. Jones, G., Willett, P., Glen, R.C., et al.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997)

    Article  Google Scholar 

  9. Taylor, J.S., Burnett, R.M.: DARWIN: a program for docking flexible molecules 191, 173–191 (2000)

    Google Scholar 

  10. Clark, K.P.: Flexible ligand docking without parameter adjustment across four ligand-receptor complexes. J. Comput. Chem. 16, 1210–1226 (1995)

    Article  Google Scholar 

  11. Schellhammer, I., Rarey, M.: FlexX-Scan: fast, structure-based virtual screening. Proteins Struct. Funct. Genet. 57, 504–517 (2004). doi:10.1002/prot.20217

    Article  Google Scholar 

  12. Mcmartin, C., Bohacek, R.S.: QXP: powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des. 11, 333–344 (1997)

    Article  Google Scholar 

  13. Welch, W., Ruppert, J., Jain, A.N.: Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem. Biol. 3, 449–462 (1996). doi:10.1016/S1074-5521(96)90093-9

    Article  Google Scholar 

  14. Chen, G.S., Chern, J.W.: Computer-aided drug design. In: Drug Discovery Research: New Frontiers in the Post-Genomic Era, pp. 89–107 (2006)

    Google Scholar 

  15. Song, C.M., Lim, S.J., Tong, J.C.: Recent advances in computer-aided drug design. Brief. Bioinform. 10, 579–591 (2009)

    Article  Google Scholar 

  16. Schneider, G., Fechner, U.: Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discovery 4, 649–663 (2005). doi:10.1038/nrd1799

    Article  Google Scholar 

  17. Nishibata, Y., Itai, A.: Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47, 8985–8990 (1991). doi:10.1016/S0040-4020(01)86503-0

    Article  Google Scholar 

  18. Lindert, S., Durrant, J.D., Mccammon, J.A.: LigMerge: a fast algorithm to generate models of novel potential ligands from sets of known binders. Chem. Biol. Drug Des. 80, 358–365 (2012)

    Article  Google Scholar 

  19. Gillet, V.J., Newell, W., Mata, P., et al.: SPROUT: recent developments in the de novo design of molecules. J. Chem. Inf. Comput. Sci. 34, 207–217 (1994). doi:10.1021/ci00017a027

    Article  Google Scholar 

  20. Waszkowycz, B., Clark, D.E., Frenkel, D., et al.: PRO_LIGAND: an approach to de novo molecular design. 2. Design of novel molecules from molecular field analysis (MFA) models and pharmacophores. J. Med. Chem. 37, 3994–4002 (1994). doi:10.1021/jm00049a019

    Article  Google Scholar 

  21. Devi, R.V., Sathya, S.S., Coumar, M.S.: Evolutionary algorithms for de novo drug design – A survey. Appl. Soft Comput. 27, 543–552 (2015)

    Article  Google Scholar 

  22. López-Camacho, E., García Godoy, M.J., García-Nieto, J., et al.: Solving molecular flexible docking problems with metaheuristics: a comparative study. Appl. Soft Comput. 28, 379–393 (2015)

    Article  Google Scholar 

  23. Cecchini, M., Kolb, P., Majeux, N., et al.: Automated docking of highly flexible ligands by genetic algorithms: a critical assessment. J. Comput. Chem. 25, 412–422 (2003)

    Article  Google Scholar 

  24. Jones, G., Willett, P., Glen, R.C.: Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245, 43–53 (1995)

    Article  Google Scholar 

  25. de Magalhães, C.S., Barbosa, H.J.C., Dardenne, L.E.: A genetic algorithm for the ligand-protein docking problem. Genet. Mol. Biol. 27, 605–610 (2004)

    Article  Google Scholar 

  26. Naga, P.L., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic Algorithms for the Travelling Salesman Problem: a review of representations and operators. Artif. Intell. Rev. 13, 129–170 (1999)

    Article  Google Scholar 

  27. Willett, P.: Genetic algorithms in molecular recognition and design. Trends Biotechnol. 13, 516–521 (1995)

    Article  Google Scholar 

  28. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8, 10–15 (1993)

    Article  MATH  Google Scholar 

  29. Rutenbar, R.A.: Simulated annealing algorithms: an overview. IEEE Circuits Devices Mag. 5, 19–26 (1989). doi:10.1109/101.17235

    Article  Google Scholar 

  30. Glover, F., Laguna, M.: Tabu Search (1997). doi:10.1007/978-1-4615-6089-0

    Google Scholar 

  31. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26, 29–41 (1996). doi:10.1109/3477.484436

    Article  Google Scholar 

  32. Radcliffe, N., Surry, P.: Formal memetic algorithms. In: Evolutionary Computing, pp. 1–16 (1994)

    Google Scholar 

  33. Amin, S.: Simulated jumping. Ann. Oper. Res. 86, 23–38 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Osman, I.H., Christofides, N.: Capacitated clustering problems by hybrid simulated annealing and tabu search. Int. Trans. Opt. Res. 1(3), 317–336 (1994). doi:10.1111/1475-3995.d01-43. Print Great Britain

    Google Scholar 

  35. Erickson, J.: NP-Hard Problems. Algorithms Course Mater, pp. 1–18 (2009). doi:10.1080/00949658208810560

    Google Scholar 

  36. Fernandez-Villacanas, J.L., Amin, S.: Simulated jumping in genetic algorithms for a set of test functions. In: Proceedings of Intelligent Information Systems, IIS 1997 (1997). doi:10.1109/IIS.1997.645223

Download references

Acknowledgement

This work is carried out within the framework of a research grant funded by Ministry of Higher Education (MOHE) Fundamental Research Grant Scheme (Project Code: FRGS/1/2014/ICT1/TAYLOR/03/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Chen Woon Peh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Peh, S.C.W., Hong, J.L. (2016). Protein Ligand Docking Using Simulated Jumping. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9788. Springer, Cham. https://doi.org/10.1007/978-3-319-42111-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42111-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42110-0

  • Online ISBN: 978-3-319-42111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics