Skip to main content

A Delay-Driven Switching-Based Broadcasting Scheme in Low-Duty-Cycled Wireless Sensor Networks

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9787))

Included in the following conference series:

  • 1499 Accesses

Abstract

Wireless Sensor Networks (WSNs) are proven to be an important part of the everyday modern life. In that, broadcasting essentially delivers network-wide configurations, code updates, or route finding requests to the sensor nodes. Addressing the delay performance of tree-based broadcasting in low-duty-cycled WSNs, this paper proposes a novel switching-based scheme to enhance the overall broadcasting delay given one sink node sending out the packet. Simulation results show that the proposed algorithm significantly improves delay compared to the well-known schemes, while maintaining a comparable number of transmissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Q., Cheng, S., Gao, H., Li, J., Cai, Z.: Energy-efficient algorithm for multicasting in duty-cycled sensor networks. J. Sens. 15(12), 31224–31243 (2015)

    Article  Google Scholar 

  2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. J. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. Xu, L., Zhu, X., Dai, H., Wu, X., Chen, G.: Towards energy-fairness for broadcast scheduling with minimum delay in low-duty-cycle sensor networks. J. Comput. Commun. 75(1), 81–96 (2016)

    Article  Google Scholar 

  4. Gorce, J.M., Zhang, R., Parvery, H.: Impact of radio link unreliability on the connectivity of wireless sensor networks. EURASIP J. Wirel. Commun. Netw. (2007)

    Google Scholar 

  5. Gu, Y., He, T.: Data forwarding in extremely low-duty-cycled sensor network with unreliable communication links. In: Proceedings of SenSys 2007, pp. 321–334 (2007)

    Google Scholar 

  6. Choe, J., Ha, N.P.K., Hong, J., Choo, H.: Fast and reliable data forwarding in low-duty-cycle wireless sensor networks. In: Proceedings of ICCSA 2012, pp. 324–338 (2012)

    Google Scholar 

  7. Guo, S., Kim, S.M., Zhu, T., Gu, Y., He, T.: Correlated flooding in low-duty-cycle wireless sensor networks. In: Proceedings of ICNP 2011, pp.383–392 (2011)

    Google Scholar 

  8. Guo, S., Gu, Y., Jiang, B., He, T.: Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. In: Proceedings of INFOCOM 2009, pp. 2787–2802 (2009)

    Google Scholar 

  9. Niu, J., Cheng, L., Gu, Y., Jun, J., Zhang, Q.: Minimum-delay and energy efficient flooding tree in asynchronous low-duty-cycle wireless sensor networks. In: Proceedings of WCNC 2013, pp.1261–1266 (2013)

    Google Scholar 

  10. Guo, S., He, T.: Robust Multi-pipeline scheduling in low-duty-cycle wireless sensor networks. In: Proceedings of INFOCOM 2012, pp.361–369 (2012)

    Google Scholar 

  11. Cheng, L., Gu, Y., He, T., Niu, J.: Dynamic switching-based reliable flooding in low-duty-cycle wireless sensor networks. In: Proceedings of INFOCOM 2013, pp. 1393–1401 (2013)

    Google Scholar 

  12. Im, G., Le, T., Choo, H., Kim, D.S.: Critical-path aware broadcast scheduling in duty-cycled wireless sensor networks. In: Proceedings of ICOIN 2015, pp. 410–411 (2015)

    Google Scholar 

  13. Wu, S., Niu, J., Cheng, L., Chou, W.: Energy efficient flooding under minimum delay constraint in synchronous low-duty-cycle wireless sensor networks. In: Proceedings of ComComAp 2014, pp.121–126 (2014)

    Google Scholar 

  14. Zhu, T., Zhong, Z., He, T., Zhang, Z.: Exploring link correlation for efficient flooding in wireless sensor networks. In: Proceedings of NSDI 2010, pp. 1–15 (2010)

    Google Scholar 

  15. Su, W., Akyildiz, I.F.: Time-diffusion synchronization protocol for wireless sensor networks. ACM Trans. Netw. 13(2), 384–397 (2005)

    Article  Google Scholar 

  16. Wu, Y.C., Chaudhari, Q., Serpedin, E.: Clock synchronization of wireless sensor networks. In: IEEE signal processing magazine 2011, pp. 124–138 (2011)

    Google Scholar 

  17. Ha, N.P.K., Zalyubovskiy, V., Choo, H.: Delay-efficient data aggregation scheduling in duty-cycled wireless sensor networks. In: Proceedings of RACS 2012, pp. 203–208 (2012)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the MSIP, Korea, under the G-ITRC support program (IITP-2015-R6812-15-0001) supervised by the IITP, Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2010-0020210), and by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. 10041244, Smart TV 2.0 Software Platform).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunseung Choo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, D.T., Zalyubovskiy, V.V., Le-Duc, T., Le, DT., Choo, H. (2016). A Delay-Driven Switching-Based Broadcasting Scheme in Low-Duty-Cycled Wireless Sensor Networks. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9787. Springer, Cham. https://doi.org/10.1007/978-3-319-42108-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42108-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42107-0

  • Online ISBN: 978-3-319-42108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics