Advertisement

Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on \(\varvec{\mathscr {D'}}(\mathbb {C})\)

  • Emanuel GuarigliaEmail author
  • Sergei Silvestrov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 179)

Abstract

In this chapter we describe a wavelet expansion theory for positive definite distributions over the real line and define a fractional derivative operator for complex functions in the distribution sense. In order to obtain a characterization of the complex fractional derivative through the distribution theory, the Ortigueira-Caputo fractional derivative operator \(_{\text {C}}\text {D}^{\alpha }\) [13] is rewritten as a convolution product according to the fractional calculus of real distributions [8]. In particular, the fractional derivative of the Gabor–Morlet wavelet is computed together with its plots and main properties.

Keywords

Wavelet basis Positive definite distribution Complex fractional derivative Gabor–Morlet wavelet 

Notes

Acknowledgements

Emanuel Guariglia would like to thank the Division of Applied Mathematics, School of Education, Culture and Communication, Mälardalens University for giving him the opportunity to work in an extremely favourable research environment.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Martino Fine Books, New York (2014)zbMATHGoogle Scholar
  2. 2.
    Cattani, C.: Shannon wavelets theory. Math. Probl. Eng. 2008, 1–24 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Corinthios, M.J.: Generalisation of the Dirac-delta impulse extending Laplace and z transform domains. IEE Proc. Vis. Image Sig. Process. 150, 69–81 (2003)CrossRefGoogle Scholar
  4. 4.
    Corinthios, M.J.: Complex-variable distribution theory for Laplace and z transforms. IEE Proc. Vis. Image Sig. Process. 152, 97–106 (2005)CrossRefGoogle Scholar
  5. 5.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Donoghue Jr., W.F.: Distributions and Fourier Transform. Academic Press, New York (1969)zbMATHGoogle Scholar
  7. 7.
    Gabardo, J.-P.: Extension of Positive-Definite Distributions and Maximum Entropy. Memoirs of the American Mathematical Society, vol. 102. American Mathematical Society, Providence (1993)Google Scholar
  8. 8.
    Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Academic Press, New York (1964)zbMATHGoogle Scholar
  9. 9.
    Guariglia, E.: Fractional derivative of the Riemann zeta function. In: Cattani C., Srivastava H., Yang X.J. (eds.) Fractional Dynamics, De Gruyter Open, Chap. 21 (2015)Google Scholar
  10. 10.
    Hernández, E., Weiss, G.: A First Course of Wavelets. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hölschneider, M.: Wavelets: An Analysis Tool. Clarendon Press, New York (1999)zbMATHGoogle Scholar
  12. 12.
    Lemarié, P.G., Meyer, Y.: Ondeletles et bases hilbertiennes. Revista Matemática Iberoamericana 2, 1–18 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, C., Dao, X., Guo, P.: Fractional derivatives in complex planes. Nonlinear Anal. Theory Methods Appl. 71, 1857–1869 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Neeb, K.-H., Ólafsson, G.: Reflection positivity and conformal symmetry. J. Funct. Anal. Elsevier 266, 2174–2224 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers, pp. 35–37. Springer, London (2011)Google Scholar
  16. 16.
    Saneva, K., Vindas, J.: Wavelet expansions and asymptotic behaviour of distributions. J. Math. Anal. Appl. 370, 543–554 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schwartz, L.: Théorie des Distributions, vol. 1-2. Hermann, Paris (1951)Google Scholar
  18. 18.
    Teolis, A.: Computational Signal Processing with Wavelets. Birkhäuser, Boston (1998)zbMATHGoogle Scholar
  19. 19.
    Triebel, H.: Function Spaces and Wavelets on Domains. European Mathematical Society, Berlin (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics “E. R. Caianiello”University of SalernoFiscianoItaly
  2. 2.Division of Applied Mathematics, School of Education, Culture and CommunicationMälardalen UniversityVästeråsSweden

Personalised recommendations