Skip to main content

Graph Centrality Based Prediction of Cancer Genes

  • Conference paper
  • First Online:
Engineering Mathematics II

Abstract

Current cancer therapies including surgery, radiotherapy and chemotherapy are often plagued by high failure rates. Designing more targeted and personalized treatment strategies requires a detailed understanding of druggable tumor driver genes. As a consequence, the detection of cancer driver genes has evolved to a critical scientific field integrating both high-throughput experimental screens as well as computational and statistical strategies. Among such approaches, network based prediction tools have recently been accentuated and received major focus due to their potential to model various aspects of the role of cancer genes in a biological system. In this chapter, we focus on how graph centralities obtained from biological networks have been used to predict cancer genes. Specifically, we start by discussing the current problems in cancer therapy and the reasoning behind using network based cancer gene prediction, followed by an outline of biological networks, their generation and properties. Finally, we review major concepts, recent results as well as future challenges regarding the use of graph centralities in cancer gene prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A comprehensive list of centralities can be found in the CentiServer (http://www.centiserver.org/) [72].

References

  1. Abbott, K.L., Nyre, E.T., Abrahante, J., Ho, Y.Y., Vogel, R.I., Starr, T.K.: The candidate cancer gene database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43, D844–D848 (2015)

    Article  Google Scholar 

  2. Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7, 243–255 (2006)

    Article  Google Scholar 

  3. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)

    Article  Google Scholar 

  4. Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 1–13 (2010)

    Article  Google Scholar 

  5. Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. In: Proceedings of the National Academy of Sciences of the United States of America vol. 97, pp. 11149–11152 (2000)

    Google Scholar 

  6. An, O., Dall’Olio, G.M., Mourikis, T.P., Ciccarelli, F.D.: NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Res. 44, D992–D999 (2016)

    Article  Google Scholar 

  7. Arias, E., Kochanek, K.D., Anderson, R.N.: How does cause of death contribute to the Hispanic mortality advantage in the United States? NCHS Data Brief 221, 1–8 (2015)

    Google Scholar 

  8. Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., Tuschl, T.: Identification of RNA-protein interaction networks using PAR-CLIP. Wires RNA 3, 159–177 (2012)

    Article  Google Scholar 

  9. Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004)

    Article  Google Scholar 

  10. Balkwill, F.R., Capasso, M., Hagemann, T.: The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596 (2012)

    Article  Google Scholar 

  11. Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)

    Article  Google Scholar 

  12. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–U115 (2004)

    Google Scholar 

  13. Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)

    Article  Google Scholar 

  14. Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10, 161–163 (1965)

    Article  Google Scholar 

  15. Berggard, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842 (2007)

    Article  Google Scholar 

  16. Bhattacharyya, M., Chakrabarti, S.: Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar. J. 14, 70 (2015)

    Article  Google Scholar 

  17. Björklund, A.K., Light, S., Hedin, L., Elofsson, A.: Quantitative assessment of the structural bias in protein-protein interaction assays. Proteomics 8, 4657–4667 (2008)

    Google Scholar 

  18. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10, 222–262 (2014)

    Article  MathSciNet  Google Scholar 

  19. Bonacich, P.: Technique for analyzing overlapping memberships. Sociol. Methodol. 4, 176–185 (1972)

    Article  Google Scholar 

  20. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)

    Article  Google Scholar 

  21. Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE Publications Limited, Los Angeles (2013)

    Google Scholar 

  22. Bossi, A., Lehner, B.: Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009)

    Article  Google Scholar 

  23. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008)

    Article  Google Scholar 

  24. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN 30, 107–117 (1998)

    Article  Google Scholar 

  25. Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2004)

    Article  Google Scholar 

  26. Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013)

    Article  Google Scholar 

  27. Butts, C.T.: Social network analysis with SNA. J. Stat. Softw. 24, 1–51 (2008)

    Google Scholar 

  28. Carter, S.L., Brechbuhler, C.M., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)

    Article  Google Scholar 

  29. Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., et al.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011)

    Article  Google Scholar 

  30. Chen, L., Qu, X., Cao, M., Zhou, Y., Li, W., Liang, B., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013)

    Google Scholar 

  31. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)

    Article  Google Scholar 

  32. Coombes, R.C.: Drug testing in the patient: toward personalized cancer treatment. Sci. Transl. Med. 7 (2015)

    Google Scholar 

  33. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)

    Google Scholar 

  34. Dangalchev, C.: Residual closeness in networks. Phys. A 365, 556–564 (2006)

    Article  Google Scholar 

  35. del Rio, G., Koschützki, D., Coello, G.: How to identify essential genes from molecular networks? BMC Syst. Biol. 3, 1–12 (2009)

    Google Scholar 

  36. Diamandis, M., White, N.M.A., Yousef, G.M.: Personalized medicine: marking a new epoch in cancer patient management. Mol. Cancer Res. 8, 1175–1187 (2010)

    Article  Google Scholar 

  37. Dobrin, R., Beg, Q.K., Barabasi, A.L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform. 5, 1–8 (2004)

    Article  Google Scholar 

  38. Efron, B., Tibshirani, R.: On testing the significance of sets of genes. Ann. Appl. Stat. 1, 107–129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al.: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015)

    Article  Google Scholar 

  40. Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6, 35–40 (2006)

    Article  Google Scholar 

  41. Estrada, E.: Protein bipartivity and essentiality in the yeast protein-protein interaction network. J. Proteome Res. 5, 2177–2184 (2006)

    Article  Google Scholar 

  42. Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D.D., Hartman, S., et al.: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909 (2007)

    Article  Google Scholar 

  43. Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016)

    Article  Google Scholar 

  44. Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., et al.: Large- scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 54–66 (2007)

    Article  Google Scholar 

  45. Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al.: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015)

    Article  Google Scholar 

  46. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  47. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979)

    Article  Google Scholar 

  48. Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs - a measure of betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)

    Article  MathSciNet  Google Scholar 

  49. Fronza, R., Vasciaveo, A., Benso, A., Schmidt, M.: A graph based framework to model virus integration sites. Comput. Struct. Biotechnol. J. 14, 69–77 (2016)

    Article  Google Scholar 

  50. Giam, M., Rancati, G.: Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3 (2015)

    Article  Google Scholar 

  51. Gillis, J., Ballouz, S., Pavlidis, P.: Bias tradeoffs in the creation and analysis of protein- protein interaction networks. J. Proteomics 100, 44–54 (2014)

    Article  Google Scholar 

  52. Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., et al.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)

    Article  Google Scholar 

  53. Gleich, D.F.: Chapter 7 on MatlabBGL. Models and Algorithms for PageRank Sensitivity. Stanford University (2009)

    Google Scholar 

  54. Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)

    Article  Google Scholar 

  55. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. In: Proceedings of the National Academy of Sciences of the United States of America vol. 104, pp. 8685–8690 (2007)

    Google Scholar 

  56. Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M.P., Jene-Sanz, A., et al.: IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013)

    Article  Google Scholar 

  57. Grassler, J., Koschützki, D., Schreiber, F.: CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 28, 1178–1179 (2012)

    Google Scholar 

  58. Gu, Z.G., Wang, J.: CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics 29, 658–660 (2013)

    Google Scholar 

  59. Guan, Y.F., Gorenshteyn, D., Burmeister, M., Wong, A.K., Schimenti, J.C., Handel, M.A., et al.: Tissue- specific functional networks for prioritizing phenotype and disease genes. PLoS Comput. Biol. 8, e1002694 (2012)

    Article  Google Scholar 

  60. Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 60–63 (2002)

    Article  Google Scholar 

  61. Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., et al.: The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015)

    Article  Google Scholar 

  62. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)

    Article  Google Scholar 

  63. Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005)

    Article  Google Scholar 

  64. Hardy, S., Legagneux, V., Audic, Y., Paillard, L.: Reverse genetics in eukaryotes. Biol. Cell 102, 561–580 (2010)

    Article  Google Scholar 

  65. Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 1–17 (2012)

    Article  Google Scholar 

  66. Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005)

    Article  Google Scholar 

  67. Hu, P.Z., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nat. Rev. Cancer 7, 23–34 (2007)

    Article  Google Scholar 

  68. Huang, X., Zi, Z.K.: Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Mol. Biosyst. 10, 2023–2030 (2014)

    Article  Google Scholar 

  69. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. Plos One 5, e12776 (2010)

    Article  Google Scholar 

  70. Izudheen, S., Mathew, S.: Cancer gene identification using graph centrality. Curr. Sci. 105, 1143–1148 (2013)

    Google Scholar 

  71. Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., Scaria, V.: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. Plos One 8, e53823 (2013)

    Article  Google Scholar 

  72. Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S.S., Yaghmaie, M., Ghavamzadeh, A., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. Plos One 10, e0143111 (2015)

    Article  Google Scholar 

  73. Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al.: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)

    Article  Google Scholar 

  74. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  75. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  76. Jinq, Z., Hong, Y., Jianhua, L., Cao, Z.W., Li, Y.X.: Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 51, 1529–1537 (2006)

    Article  MathSciNet  Google Scholar 

  77. Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006)

    Article  Google Scholar 

  78. Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005, 96–103 (2005)

    Article  Google Scholar 

  79. Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with CentiBiN. BMC Bioinform. 7, 1–7 (2006)

    Google Scholar 

  80. Kamburov, A., Stelzl, U., Lehrach, H., Herwig, R.: The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013)

    Article  Google Scholar 

  81. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016)

    Article  Google Scholar 

  82. Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)

    Article  Google Scholar 

  83. Karabekmez, M.E., Kirdar, B.: A novel topological centrality measure capturing biologically important proteins. Mol. Biosyst. 12, 666–673 (2016)

    Article  Google Scholar 

  84. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)

    Article  MATH  Google Scholar 

  85. Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.: The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012)

    Article  Google Scholar 

  86. Kim, S.Y., Volsky, D.J.: PAGE: parametric analysis of gene set enrichment. BMC Bioinform. 6, 144 (2005)

    Article  Google Scholar 

  87. Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Sci. Technol. 17, 645–658 (2012)

    Article  Google Scholar 

  88. Kool, J., Berns, A.: High throughput insertional mutagenesis screens in mice to identify oncogenic networks (vol 9, pg 389, 2009). Nat. Rev. Cancer 9, 604–604 (2009)

    Article  Google Scholar 

  89. Koschützki, D., Schreiber, F.: Comparison of centralities for biological networks. In: German Conference on Bioinformatics (2004)

    Google Scholar 

  90. Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193–201 (2008)

    Google Scholar 

  91. Koschützki, D., Schwobbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theor. Biol. 248, 471–479 (2007)

    Google Scholar 

  92. Kreso, A., O’Brien, C.A., van Galen, P., Gan, O.I., Notta, F., Brown, A.M.K., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013)

    Article  Google Scholar 

  93. Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)

    Article  Google Scholar 

  94. Li, M., Zhang, H., Wang, J.X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6, 15 (2012)

    Article  Google Scholar 

  95. Li, S.M., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., et al.: A map of the interactome network of the metazoan C-elegans. Science 303, 540–543 (2004)

    Article  Google Scholar 

  96. Lin, N.: Foundations of Social Research. McGraw-Hill, New York (1976)

    Google Scholar 

  97. Linghu, B., Snitkin, E.S., Hu, Z., Xia, Y., Delisi, C.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91 (2009)

    Article  Google Scholar 

  98. Linghu, B., Franzosa, E.A., Xia, Y.: Construction of functional linkage gene networks by data integration. Methods Mol. Biol. 939, 215–232 (2013)

    Article  Google Scholar 

  99. Luscombe, N.M., Babu, M.M., Yu, H.Y., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)

    Article  Google Scholar 

  100. Ma, X.K., Gao, L.: Biological network analysis: insights into structure and functions. Brief. Funct. Genomics 11, 434–442 (2012)

    Article  Google Scholar 

  101. Magger, O., Waldman, Y.Y., Ruppin, E., Sharan, R.: Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput. Biol. 8, e1002690 (2012)

    Article  Google Scholar 

  102. Marbach, D., Costello, J.C., Kuffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012)

    Article  Google Scholar 

  103. March, H.N., Rust, A.G., Wright, N.A., Ten Hoeve, J., de Ridder, J., Eldridge, M., et al.: Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43, 1202–U1255 (2011)

    Google Scholar 

  104. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, 1–15 (2006)

    Article  Google Scholar 

  105. Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. BBA-Rev. Cancer 1805, 105–117 (2010)

    Google Scholar 

  106. Mathelier, A., Wasserman, W.W.: The next generation of transcription factor binding site prediction. PLoS Comput. Biol. 9, e1003214 (2013)

    Article  Google Scholar 

  107. Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., et al.: TRANSFAC (R) and its module TRANSCompel (R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006)

    Article  Google Scholar 

  108. McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution (vol 27, pg 15, 2015). Cancer Cell 28, 141–141 (2015)

    Article  Google Scholar 

  109. Meacham, C.E., Morrison, S.J.: Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013)

    Article  Google Scholar 

  110. Meyer, M., Reimand, J., Lan, X., Head, R., Zhu, X., Kushida, M., et al.: Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 851–856 (2015)

    Google Scholar 

  111. Miernyk, J.A., Thelen, J.J.: Biochemical approaches for discovering protein-protein interactions. Plant J. 53, 597–609 (2008)

    Article  Google Scholar 

  112. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  113. Moreau, Y., Tranchevent, L.C.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536 (2012)

    Article  Google Scholar 

  114. Moresco, E.M.Y., Li, X.H., Beutler, B.: Going forward with genetics recent technological advances and forward genetics in mice. Am. J. Pathol. 182, 1462–1473 (2013)

    Article  Google Scholar 

  115. Morrissy, A.S., Garzia, L., Shih, D.J.H., Zuyderduyn, S., Huang, X., Skowron, P., et al.: Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016)

    Article  Google Scholar 

  116. Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)

    Article  Google Scholar 

  117. Ortutay, C., Vihinen, M.: Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 37, 622–628 (2009)

    Article  Google Scholar 

  118. Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698 (2006)

    Article  Google Scholar 

  119. Özgür, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24, I277–I285 (2008)

    Google Scholar 

  120. Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)

    Article  Google Scholar 

  121. Phizicky, E.M., Fields, S.: Protein-protein interactions - Methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995)

    Google Scholar 

  122. Poulin, R., Boily, M.C., Masse, B.R.: Dynamical systems to define centrality in social networks. Soc. Netw. 22, 187–220 (2000)

    Article  Google Scholar 

  123. Prasad, T.S.K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)

    Article  Google Scholar 

  124. Price, A.L., Spencer, C.C.A., Donnelly, P.: Progress and promise in understanding the genetic basis of common diseases. Proc. R. Soc. B-Biol. Sci. 282, 20151684 (2015)

    Google Scholar 

  125. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X.W., Fasolo, J., et al.: Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005)

    Article  Google Scholar 

  126. Qin, J., Hu, Y.H., Xu, F., Yalamanchili, H.K., Wang, J.W.: Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods 67, 294–303 (2014)

    Article  Google Scholar 

  127. Rajasingh, I., Rajan, B., Florence, I.D.: Betweeness-centrality of grid networks. In: Proceedings of the 2009 International Conference on Computer Technology and Development, vol. 1, pp. 407–410 (2009)

    Google Scholar 

  128. Ramanan, V.K., Shen, L., Moore, J.H., Saykin, A.J.: Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet. 28, 323–332 (2012)

    Article  Google Scholar 

  129. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  130. Resendis-Antonio, O., Freyre-Gonzalez, J.A., Menchaca-Mendez, R., Gutierrez-Rios, R.M., Martinez- Antonio, A., Avila-Sanchez, C., et al.: Modular analysis of the transcriptional regulatory network of E-coli. Trends Genet. 21, 16–20 (2005)

    Article  Google Scholar 

  131. Risch, N.J.: Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000)

    Article  Google Scholar 

  132. Rives, A.W., Galitski, T.: Modular organization of cellular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 1128–1133 (2003)

    Google Scholar 

  133. Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. ASNA. No. EPFL-CONF-200525 (2009)

    Google Scholar 

  134. Ruhnau, B.: Eigenvector-centrality - a node-centrality? Soc. Netw. 22, 357–365 (2000)

    Article  Google Scholar 

  135. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–586 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  136. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)

    Article  Google Scholar 

  137. Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., Lenhard, B.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004)

    Article  Google Scholar 

  138. Sander, J.D., Joung, J.K.: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)

    Article  Google Scholar 

  139. Sanz, J., Navarro, J., Arbues, A., Martin, C., Marijuan, P.C., Moreno, Y.: The transcriptional regulatory network of Mycobacterium tuberculosis. Plos One 6, e22178 (2011)

    Article  Google Scholar 

  140. Scardoni, G., Petterlini, M., Laudanna, C.: Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859 (2009)

    Article  Google Scholar 

  141. Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009)

    Article  Google Scholar 

  142. Schoch, D., Brandes, U.: Centrality as a predictor of lethal proteins: performance and robustness. In: MMB & DFT (2014)

    Google Scholar 

  143. Sharma, A., Gulbahce, N., Pevzner, S.J., Menche, J., Ladenvall, C., Folkersen, L., et al.: Network-based analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits. Mol. Cell. Proteomics 12, 3398–3408 (2013)

    Article  Google Scholar 

  144. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)

    Article  Google Scholar 

  145. Shimbel, A.: Structural parameters of communication networks. Bull. Math. Biophys. 15, 501–507 (1953)

    Article  MathSciNet  Google Scholar 

  146. Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3, 595–601 (2007)

    Google Scholar 

  147. Siddani, B.R., Pochineni, L.P., Palanisamy, M.: Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. Plos One 8, e81766 (2013)

    Article  Google Scholar 

  148. Siddharthan, R.: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix. Plos One 5, e9722 (2010)

    Article  Google Scholar 

  149. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA: Cancer J. Clin. 65, 5–29 (2015)

    Google Scholar 

  150. Silva, J., Chang, K., Hannon, G.J., Rivas, F.V.: RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401–8409 (2004)

    Article  Google Scholar 

  151. Simoes, R.D., Emmert-Streib, F.: Bagging statistical network inference from large-scale gene expression data. Plos One 7, e33624 (2012)

    Article  Google Scholar 

  152. Slater, P.J.: Maximin facility location. J. Res. NBS B Math. Sci. 79, 107–115 (1975)

    MathSciNet  MATH  Google Scholar 

  153. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 8418–8423 (2003)

    Google Scholar 

  154. Sottoriva, A., Spiteri, I., Piccirillo, S.G., Touloumis, A., Collins, V.P., Marioni, J.C., et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 4009–4014 (2013)

    Google Scholar 

  155. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12123–12128 (2003)

    Google Scholar 

  156. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)

    Article  Google Scholar 

  157. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., et al.: A human protein- protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005)

    Article  Google Scholar 

  158. Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)

    Article  Google Scholar 

  159. Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.A., Jones, D.T., Konermann, C., et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012)

    Article  Google Scholar 

  160. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011)

    Article  Google Scholar 

  161. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15545–15550 (2005)

    Google Scholar 

  162. Szalay, K.Z., Csermely, P.: Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. Plos One 8, e78059 (2013)

    Article  Google Scholar 

  163. Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform./IEEE ACM 11, 407–418 (2014)

    Article  Google Scholar 

  164. Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13, 136 (2012)

    Article  Google Scholar 

  165. Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.J., Clifford, S.C., et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012)

    Article  Google Scholar 

  166. Tong, A.H.Y., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)

    Article  Google Scholar 

  167. Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H.M., Xu, H., Xin, X.F., et al.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)

    Article  Google Scholar 

  168. Tschida, B.R., Largaespada, D.A., Keng, V.W.: Mouse models of cancer: sleeping beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin. Cell Dev. Biol. 27, 86–95 (2014)

    Article  Google Scholar 

  169. Uren, A.G., Kool, J., Berns, A., van Lohuizen, M.: Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005)

    Article  Google Scholar 

  170. Uren, A.G., Kool, J., Matentzoglu, K., de Ridder, J., Mattison, J., van Uitert, M., et al.: Large-scale mutagenesis in p19ARF-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008)

    Article  Google Scholar 

  171. Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373 (2002)

    Article  Google Scholar 

  172. Valente, T.W., Foreman, R.K.: Integration and radiality: measuring the extent of an individual’s connectedness and reachability in a network. Soc. Netw. 20, 89–105 (1998)

    Article  Google Scholar 

  173. Valouev, A., Johnson, D.S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008)

    Article  Google Scholar 

  174. Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010)

    Google Scholar 

  175. Vidal, M., Cusick, M.E., Barabasi, A.L.: Interactome networks and human disease. Cell 144, 986–998 (2011)

    Article  Google Scholar 

  176. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339, 1546–1558 (2013)

    Article  Google Scholar 

  177. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  178. Wachi, S., Yoneda, K., Wu, R.: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–4208 (2005)

    Article  Google Scholar 

  179. Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. B-Biol. Sci. 268, 1803–1810 (2001)

    Article  Google Scholar 

  180. Wang, J., Chen, G., Li, M., Pan, Y.: Integration of breast cancer gene signatures based on graph centrality. BMC Syst. Biol. 5(Suppl 3), S10 (2011)

    Article  Google Scholar 

  181. Wang, K., Li, M.Y., Hakonarson, H.: Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010)

    Article  Google Scholar 

  182. Wang, P.W., Qin, J., Qin, Y.M., Zhu, Y., Wang, L.L.Y., Li, M.L.J., et al.: ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 43, W264–W269 (2015)

    Article  Google Scholar 

  183. Wang, S., Sun, H.F., Ma, J., Zang, C.Z., Wang, C.F., Wang, J., et al.: Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515 (2013)

    Article  Google Scholar 

  184. Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005)

    Article  Google Scholar 

  185. Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10, 280–293 (2011)

    Article  Google Scholar 

  186. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  187. Wei, W., Pfeffer, J., Reminga, J., Carley, K.M.: Handling Weighted, Asymmetric, Self- Looped, and Disconnected Networks in ORA (No. CMU-ISR-11-113). Carnegie Mellon University, Pittsburgh (2011)

    Google Scholar 

  188. Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, FJ.: Loss of conservation of graph centralities in reverse-engineered transcriptional regulatory networks. In: 16th Applied Stochastic Models and Data Analysis International Conference (ASMDA2015) with Demographics 2015 Workshop (2015)

    Google Scholar 

  189. Wu, X.B., Li, S.: Cancer Gene Prediction Using a Network Approach. Chapman & Hall/CRC Mathematical and Computational Biology, pp. 191–212 (2010)

    Google Scholar 

  190. Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001)

    Article  Google Scholar 

  191. Wuchty, S., Almaas, E.: Evolutionary cores of domain co-occurrence networks. BMC Evol. Biol. 5, 1–12 (2005)

    Article  Google Scholar 

  192. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223, 45–53 (2003)

    Article  MathSciNet  Google Scholar 

  193. Wuchty, S., Oltvai, Z.N., Barabasi, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. 35, 176–179 (2003)

    Article  Google Scholar 

  194. Xu, J.Z., Li, Y.J.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006)

    Article  Google Scholar 

  195. Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5934–5939 (2004)

    Google Scholar 

  196. Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)

    Article  Google Scholar 

  197. Zellmer, V.R., Zhang, S.Y.: Evolving concepts of tumor heterogeneity. Cell Biosci. 4, 1–8 (2014)

    Article  Google Scholar 

  198. Zhang, L.V., King, O.D., Wong, S.L., Goldberg, D.S., Tong, A.H., Lesage, G., et al.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005)

    Article  Google Scholar 

  199. Zhang, M., Deng, J., Fang, C.V., Zhang, X., Lu, L.J.: Molecular network analysis and applications. In: Alterovitz, G., Ramoni, M. (eds.) Knowledge-Based Bioinformatics: From Analysis to Interpretation, pp. 253. Wiley, Chichester (2011)

    Google Scholar 

  200. Zhao, B.Y., Pritchard, J.R., Lauffenburger, D.A., Hemann, M.T.: Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4, 166–174 (2014)

    Article  Google Scholar 

  201. Zhao, H., Liu, T., Liu, L., Zhang, G., Pang, L., Yu, F., et al.: Chromatin states modify network motifs contributing to cell-specific functions. Sci. Rep. 5, 11938 (2015)

    Article  Google Scholar 

  202. Zhao, W., Langfelder, P., Fuller, T., Dong, J., Li, A., Hovarth, S.: Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20, 281–300 (2010)

    Article  MathSciNet  Google Scholar 

  203. Zhu, C., Wu, C., Aronow, B.J., Jegga, A.G.: Computational approaches for human disease gene prediction and ranking. Adv. Exp. Med. Biol. 799, 69–84 (2014)

    Article  Google Scholar 

  204. Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Childhood Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Weishaupt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, F.J. (2016). Graph Centrality Based Prediction of Cancer Genes. In: Silvestrov, S., Rančić, M. (eds) Engineering Mathematics II. Springer Proceedings in Mathematics & Statistics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-42105-6_13

Download citation

Publish with us

Policies and ethics