Advertisement

Graph Centrality Based Prediction of Cancer Genes

  • Holger WeishauptEmail author
  • Patrik Johansson
  • Christopher Engström
  • Sven Nelander
  • Sergei Silvestrov
  • Fredrik J. Swartling
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 179)

Abstract

Current cancer therapies including surgery, radiotherapy and chemotherapy are often plagued by high failure rates. Designing more targeted and personalized treatment strategies requires a detailed understanding of druggable tumor driver genes. As a consequence, the detection of cancer driver genes has evolved to a critical scientific field integrating both high-throughput experimental screens as well as computational and statistical strategies. Among such approaches, network based prediction tools have recently been accentuated and received major focus due to their potential to model various aspects of the role of cancer genes in a biological system. In this chapter, we focus on how graph centralities obtained from biological networks have been used to predict cancer genes. Specifically, we start by discussing the current problems in cancer therapy and the reasoning behind using network based cancer gene prediction, followed by an outline of biological networks, their generation and properties. Finally, we review major concepts, recent results as well as future challenges regarding the use of graph centralities in cancer gene prediction.

Keywords

Biological networks Graph centrality Disease genes Gene prioritization 

Notes

Acknowledgements

This work was supported by grants from the Swedish Childhood Cancer Foundation.

References

  1. 1.
    Abbott, K.L., Nyre, E.T., Abrahante, J., Ho, Y.Y., Vogel, R.I., Starr, T.K.: The candidate cancer gene database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res. 43, D844–D848 (2015)CrossRefGoogle Scholar
  2. 2.
    Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 7, 243–255 (2006)CrossRefGoogle Scholar
  3. 3.
    Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)CrossRefGoogle Scholar
  4. 4.
    Altay, G., Emmert-Streib, F.: Inferring the conservative causal core of gene regulatory networks. BMC Syst. Biol. 4, 1–13 (2010)CrossRefGoogle Scholar
  5. 5.
    Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. In: Proceedings of the National Academy of Sciences of the United States of America vol. 97, pp. 11149–11152 (2000)Google Scholar
  6. 6.
    An, O., Dall’Olio, G.M., Mourikis, T.P., Ciccarelli, F.D.: NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings. Nucleic Acids Res. 44, D992–D999 (2016)CrossRefGoogle Scholar
  7. 7.
    Arias, E., Kochanek, K.D., Anderson, R.N.: How does cause of death contribute to the Hispanic mortality advantage in the United States? NCHS Data Brief 221, 1–8 (2015)Google Scholar
  8. 8.
    Ascano, M., Hafner, M., Cekan, P., Gerstberger, S., Tuschl, T.: Identification of RNA-protein interaction networks using PAR-CLIP. Wires RNA 3, 159–177 (2012)CrossRefGoogle Scholar
  9. 9.
    Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004)CrossRefGoogle Scholar
  10. 10.
    Balkwill, F.R., Capasso, M., Hagemann, T.: The tumor microenvironment at a glance. J. Cell Sci. 125, 5591–5596 (2012)CrossRefGoogle Scholar
  11. 11.
    Barabasi, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)CrossRefGoogle Scholar
  12. 12.
    Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–U115 (2004)Google Scholar
  13. 13.
    Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011)CrossRefGoogle Scholar
  14. 14.
    Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10, 161–163 (1965)CrossRefGoogle Scholar
  15. 15.
    Berggard, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7, 2833–2842 (2007)CrossRefGoogle Scholar
  16. 16.
    Bhattacharyya, M., Chakrabarti, S.: Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar. J. 14, 70 (2015)CrossRefGoogle Scholar
  17. 17.
    Björklund, A.K., Light, S., Hedin, L., Elofsson, A.: Quantitative assessment of the structural bias in protein-protein interaction assays. Proteomics 8, 4657–4667 (2008)Google Scholar
  18. 18.
    Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10, 222–262 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bonacich, P.: Technique for analyzing overlapping memberships. Sociol. Methodol. 4, 176–185 (1972)CrossRefGoogle Scholar
  20. 20.
    Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23, 191–201 (2001)CrossRefGoogle Scholar
  21. 21.
    Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE Publications Limited, Los Angeles (2013)Google Scholar
  22. 22.
    Bossi, A., Lehner, B.: Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009)CrossRefGoogle Scholar
  23. 23.
    Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30, 136–145 (2008)CrossRefGoogle Scholar
  24. 24.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN 30, 107–117 (1998)CrossRefGoogle Scholar
  25. 25.
    Bulyk, M.L.: Computational prediction of transcription-factor binding site locations. Genome Biol. 5, 201 (2004)CrossRefGoogle Scholar
  26. 26.
    Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013)CrossRefGoogle Scholar
  27. 27.
    Butts, C.T.: Social network analysis with SNA. J. Stat. Softw. 24, 1–51 (2008)Google Scholar
  28. 28.
    Carter, S.L., Brechbuhler, C.M., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20, 2242–2250 (2004)CrossRefGoogle Scholar
  29. 29.
    Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., et al.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011)CrossRefGoogle Scholar
  30. 30.
    Chen, L., Qu, X., Cao, M., Zhou, Y., Li, W., Liang, B., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013)Google Scholar
  31. 31.
    Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701 (2003)CrossRefGoogle Scholar
  32. 32.
    Coombes, R.C.: Drug testing in the patient: toward personalized cancer treatment. Sci. Transl. Med. 7 (2015)Google Scholar
  33. 33.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)Google Scholar
  34. 34.
    Dangalchev, C.: Residual closeness in networks. Phys. A 365, 556–564 (2006)CrossRefGoogle Scholar
  35. 35.
    del Rio, G., Koschützki, D., Coello, G.: How to identify essential genes from molecular networks? BMC Syst. Biol. 3, 1–12 (2009)Google Scholar
  36. 36.
    Diamandis, M., White, N.M.A., Yousef, G.M.: Personalized medicine: marking a new epoch in cancer patient management. Mol. Cancer Res. 8, 1175–1187 (2010)CrossRefGoogle Scholar
  37. 37.
    Dobrin, R., Beg, Q.K., Barabasi, A.L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform. 5, 1–8 (2004)CrossRefGoogle Scholar
  38. 38.
    Efron, B., Tibshirani, R.: On testing the significance of sets of genes. Ann. Appl. Stat. 1, 107–129 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al.: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015)CrossRefGoogle Scholar
  40. 40.
    Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6, 35–40 (2006)CrossRefGoogle Scholar
  41. 41.
    Estrada, E.: Protein bipartivity and essentiality in the yeast protein-protein interaction network. J. Proteome Res. 5, 2177–2184 (2006)CrossRefGoogle Scholar
  42. 42.
    Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D.D., Hartman, S., et al.: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 17, 898–909 (2007)CrossRefGoogle Scholar
  43. 43.
    Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016)CrossRefGoogle Scholar
  44. 44.
    Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., et al.: Large- scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, 54–66 (2007)CrossRefGoogle Scholar
  45. 45.
    Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al.: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015)CrossRefGoogle Scholar
  46. 46.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  47. 47.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRefGoogle Scholar
  48. 48.
    Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs - a measure of betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Fronza, R., Vasciaveo, A., Benso, A., Schmidt, M.: A graph based framework to model virus integration sites. Comput. Struct. Biotechnol. J. 14, 69–77 (2016)CrossRefGoogle Scholar
  50. 50.
    Giam, M., Rancati, G.: Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10, 3 (2015)CrossRefGoogle Scholar
  51. 51.
    Gillis, J., Ballouz, S., Pavlidis, P.: Bias tradeoffs in the creation and analysis of protein- protein interaction networks. J. Proteomics 100, 44–54 (2014)CrossRefGoogle Scholar
  52. 52.
    Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., et al.: A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)CrossRefGoogle Scholar
  53. 53.
    Gleich, D.F.: Chapter 7 on MatlabBGL. Models and Algorithms for PageRank Sensitivity. Stanford University (2009)Google Scholar
  54. 54.
    Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)CrossRefGoogle Scholar
  55. 55.
    Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. In: Proceedings of the National Academy of Sciences of the United States of America vol. 104, pp. 8685–8690 (2007)Google Scholar
  56. 56.
    Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M.P., Jene-Sanz, A., et al.: IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013)CrossRefGoogle Scholar
  57. 57.
    Grassler, J., Koschützki, D., Schreiber, F.: CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 28, 1178–1179 (2012)Google Scholar
  58. 58.
    Gu, Z.G., Wang, J.: CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics 29, 658–660 (2013)Google Scholar
  59. 59.
    Guan, Y.F., Gorenshteyn, D., Burmeister, M., Wong, A.K., Schimenti, J.C., Handel, M.A., et al.: Tissue- specific functional networks for prioritizing phenotype and disease genes. PLoS Comput. Biol. 8, e1002694 (2012)CrossRefGoogle Scholar
  60. 60.
    Guelzim, N., Bottani, S., Bourgine, P., Kepes, F.: Topological and causal structure of the yeast transcriptional regulatory network. Nat. Genet. 31, 60–63 (2002)CrossRefGoogle Scholar
  61. 61.
    Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., et al.: The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015)CrossRefGoogle Scholar
  62. 62.
    Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17, 57–63 (1995)CrossRefGoogle Scholar
  63. 63.
    Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005)CrossRefGoogle Scholar
  64. 64.
    Hardy, S., Legagneux, V., Audic, Y., Paillard, L.: Reverse genetics in eukaryotes. Biol. Cell 102, 561–580 (2010)CrossRefGoogle Scholar
  65. 65.
    Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6, 1–17 (2012)CrossRefGoogle Scholar
  66. 66.
    Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005)CrossRefGoogle Scholar
  67. 67.
    Hu, P.Z., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nat. Rev. Cancer 7, 23–34 (2007)CrossRefGoogle Scholar
  68. 68.
    Huang, X., Zi, Z.K.: Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR). Mol. Biosyst. 10, 2023–2030 (2014)CrossRefGoogle Scholar
  69. 69.
    Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. Plos One 5, e12776 (2010)CrossRefGoogle Scholar
  70. 70.
    Izudheen, S., Mathew, S.: Cancer gene identification using graph centrality. Curr. Sci. 105, 1143–1148 (2013)Google Scholar
  71. 71.
    Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., Scaria, V.: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. Plos One 8, e53823 (2013)CrossRefGoogle Scholar
  72. 72.
    Jalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S.S., Yaghmaie, M., Ghavamzadeh, A., et al.: CentiServer: a comprehensive resource, web-based application and R package for centrality analysis. Plos One 10, e0143111 (2015)CrossRefGoogle Scholar
  73. 73.
    Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., et al.: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)CrossRefGoogle Scholar
  74. 74.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  75. 75.
    Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRefGoogle Scholar
  76. 76.
    Jinq, Z., Hong, Y., Jianhua, L., Cao, Z.W., Li, Y.X.: Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 51, 1529–1537 (2006)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006)CrossRefGoogle Scholar
  78. 78.
    Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005, 96–103 (2005)CrossRefGoogle Scholar
  79. 79.
    Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with CentiBiN. BMC Bioinform. 7, 1–7 (2006)Google Scholar
  80. 80.
    Kamburov, A., Stelzl, U., Lehrach, H., Herwig, R.: The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013)CrossRefGoogle Scholar
  81. 81.
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016)CrossRefGoogle Scholar
  82. 82.
    Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013)CrossRefGoogle Scholar
  83. 83.
    Karabekmez, M.E., Kirdar, B.: A novel topological centrality measure capturing biologically important proteins. Mol. Biosyst. 12, 666–673 (2016)CrossRefGoogle Scholar
  84. 84.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)zbMATHCrossRefGoogle Scholar
  85. 85.
    Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al.: The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–D846 (2012)CrossRefGoogle Scholar
  86. 86.
    Kim, S.Y., Volsky, D.J.: PAGE: parametric analysis of gene set enrichment. BMC Bioinform. 6, 144 (2005)CrossRefGoogle Scholar
  87. 87.
    Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Sci. Technol. 17, 645–658 (2012)CrossRefGoogle Scholar
  88. 88.
    Kool, J., Berns, A.: High throughput insertional mutagenesis screens in mice to identify oncogenic networks (vol 9, pg 389, 2009). Nat. Rev. Cancer 9, 604–604 (2009)CrossRefGoogle Scholar
  89. 89.
    Koschützki, D., Schreiber, F.: Comparison of centralities for biological networks. In: German Conference on Bioinformatics (2004)Google Scholar
  90. 90.
    Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2, 193–201 (2008)Google Scholar
  91. 91.
    Koschützki, D., Schwobbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theor. Biol. 248, 471–479 (2007)Google Scholar
  92. 92.
    Kreso, A., O’Brien, C.A., van Galen, P., Gan, O.I., Notta, F., Brown, A.M.K., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013)CrossRefGoogle Scholar
  93. 93.
    Li, J.H., Liu, S., Zhou, H., Qu, L.H., Yang, J.H.: StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014)CrossRefGoogle Scholar
  94. 94.
    Li, M., Zhang, H., Wang, J.X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6, 15 (2012)CrossRefGoogle Scholar
  95. 95.
    Li, S.M., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., et al.: A map of the interactome network of the metazoan C-elegans. Science 303, 540–543 (2004)CrossRefGoogle Scholar
  96. 96.
    Lin, N.: Foundations of Social Research. McGraw-Hill, New York (1976)Google Scholar
  97. 97.
    Linghu, B., Snitkin, E.S., Hu, Z., Xia, Y., Delisi, C.: Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 10, R91 (2009)CrossRefGoogle Scholar
  98. 98.
    Linghu, B., Franzosa, E.A., Xia, Y.: Construction of functional linkage gene networks by data integration. Methods Mol. Biol. 939, 215–232 (2013)CrossRefGoogle Scholar
  99. 99.
    Luscombe, N.M., Babu, M.M., Yu, H.Y., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)CrossRefGoogle Scholar
  100. 100.
    Ma, X.K., Gao, L.: Biological network analysis: insights into structure and functions. Brief. Funct. Genomics 11, 434–442 (2012)CrossRefGoogle Scholar
  101. 101.
    Magger, O., Waldman, Y.Y., Ruppin, E., Sharan, R.: Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput. Biol. 8, e1002690 (2012)CrossRefGoogle Scholar
  102. 102.
    Marbach, D., Costello, J.C., Kuffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012)CrossRefGoogle Scholar
  103. 103.
    March, H.N., Rust, A.G., Wright, N.A., Ten Hoeve, J., de Ridder, J., Eldridge, M., et al.: Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet 43, 1202–U1255 (2011)Google Scholar
  104. 104.
    Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, 1–15 (2006)CrossRefGoogle Scholar
  105. 105.
    Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. BBA-Rev. Cancer 1805, 105–117 (2010)Google Scholar
  106. 106.
    Mathelier, A., Wasserman, W.W.: The next generation of transcription factor binding site prediction. PLoS Comput. Biol. 9, e1003214 (2013)CrossRefGoogle Scholar
  107. 107.
    Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., et al.: TRANSFAC (R) and its module TRANSCompel (R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006)CrossRefGoogle Scholar
  108. 108.
    McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution (vol 27, pg 15, 2015). Cancer Cell 28, 141–141 (2015)CrossRefGoogle Scholar
  109. 109.
    Meacham, C.E., Morrison, S.J.: Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013)CrossRefGoogle Scholar
  110. 110.
    Meyer, M., Reimand, J., Lan, X., Head, R., Zhu, X., Kushida, M., et al.: Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 851–856 (2015)Google Scholar
  111. 111.
    Miernyk, J.A., Thelen, J.J.: Biochemical approaches for discovering protein-protein interactions. Plant J. 53, 597–609 (2008)CrossRefGoogle Scholar
  112. 112.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  113. 113.
    Moreau, Y., Tranchevent, L.C.: Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536 (2012)CrossRefGoogle Scholar
  114. 114.
    Moresco, E.M.Y., Li, X.H., Beutler, B.: Going forward with genetics recent technological advances and forward genetics in mice. Am. J. Pathol. 182, 1462–1473 (2013)CrossRefGoogle Scholar
  115. 115.
    Morrissy, A.S., Garzia, L., Shih, D.J.H., Zuyderduyn, S., Huang, X., Skowron, P., et al.: Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529, 351–357 (2016)CrossRefGoogle Scholar
  116. 116.
    Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)CrossRefGoogle Scholar
  117. 117.
    Ortutay, C., Vihinen, M.: Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 37, 622–628 (2009)CrossRefGoogle Scholar
  118. 118.
    Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698 (2006)CrossRefGoogle Scholar
  119. 119.
    Özgür, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24, I277–I285 (2008)Google Scholar
  120. 120.
    Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014)CrossRefGoogle Scholar
  121. 121.
    Phizicky, E.M., Fields, S.: Protein-protein interactions - Methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995)Google Scholar
  122. 122.
    Poulin, R., Boily, M.C., Masse, B.R.: Dynamical systems to define centrality in social networks. Soc. Netw. 22, 187–220 (2000)CrossRefGoogle Scholar
  123. 123.
    Prasad, T.S.K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37, D767–D772 (2009)CrossRefGoogle Scholar
  124. 124.
    Price, A.L., Spencer, C.C.A., Donnelly, P.: Progress and promise in understanding the genetic basis of common diseases. Proc. R. Soc. B-Biol. Sci. 282, 20151684 (2015)Google Scholar
  125. 125.
    Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X.W., Fasolo, J., et al.: Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005)CrossRefGoogle Scholar
  126. 126.
    Qin, J., Hu, Y.H., Xu, F., Yalamanchili, H.K., Wang, J.W.: Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods 67, 294–303 (2014)CrossRefGoogle Scholar
  127. 127.
    Rajasingh, I., Rajan, B., Florence, I.D.: Betweeness-centrality of grid networks. In: Proceedings of the 2009 International Conference on Computer Technology and Development, vol. 1, pp. 407–410 (2009)Google Scholar
  128. 128.
    Ramanan, V.K., Shen, L., Moore, J.H., Saykin, A.J.: Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet. 28, 323–332 (2012)CrossRefGoogle Scholar
  129. 129.
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRefGoogle Scholar
  130. 130.
    Resendis-Antonio, O., Freyre-Gonzalez, J.A., Menchaca-Mendez, R., Gutierrez-Rios, R.M., Martinez- Antonio, A., Avila-Sanchez, C., et al.: Modular analysis of the transcriptional regulatory network of E-coli. Trends Genet. 21, 16–20 (2005)CrossRefGoogle Scholar
  131. 131.
    Risch, N.J.: Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000)CrossRefGoogle Scholar
  132. 132.
    Rives, A.W., Galitski, T.: Modular organization of cellular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 1128–1133 (2003)Google Scholar
  133. 133.
    Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. ASNA. No. EPFL-CONF-200525 (2009)Google Scholar
  134. 134.
    Ruhnau, B.: Eigenvector-centrality - a node-centrality? Soc. Netw. 22, 357–365 (2000)CrossRefGoogle Scholar
  135. 135.
    Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–586 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)CrossRefGoogle Scholar
  137. 137.
    Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., Lenhard, B.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004)CrossRefGoogle Scholar
  138. 138.
    Sander, J.D., Joung, J.K.: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)CrossRefGoogle Scholar
  139. 139.
    Sanz, J., Navarro, J., Arbues, A., Martin, C., Marijuan, P.C., Moreno, Y.: The transcriptional regulatory network of Mycobacterium tuberculosis. Plos One 6, e22178 (2011)CrossRefGoogle Scholar
  140. 140.
    Scardoni, G., Petterlini, M., Laudanna, C.: Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859 (2009)CrossRefGoogle Scholar
  141. 141.
    Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009)CrossRefGoogle Scholar
  142. 142.
    Schoch, D., Brandes, U.: Centrality as a predictor of lethal proteins: performance and robustness. In: MMB & DFT (2014)Google Scholar
  143. 143.
    Sharma, A., Gulbahce, N., Pevzner, S.J., Menche, J., Ladenvall, C., Folkersen, L., et al.: Network-based analysis of genome wide association data provides novel candidate genes for lipid and lipoprotein traits. Mol. Cell. Proteomics 12, 3398–3408 (2013)CrossRefGoogle Scholar
  144. 144.
    Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002)CrossRefGoogle Scholar
  145. 145.
    Shimbel, A.: Structural parameters of communication networks. Bull. Math. Biophys. 15, 501–507 (1953)MathSciNetCrossRefGoogle Scholar
  146. 146.
    Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3, 595–601 (2007)Google Scholar
  147. 147.
    Siddani, B.R., Pochineni, L.P., Palanisamy, M.: Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. Plos One 8, e81766 (2013)CrossRefGoogle Scholar
  148. 148.
    Siddharthan, R.: Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix. Plos One 5, e9722 (2010)CrossRefGoogle Scholar
  149. 149.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA: Cancer J. Clin. 65, 5–29 (2015)Google Scholar
  150. 150.
    Silva, J., Chang, K., Hannon, G.J., Rivas, F.V.: RNA-interference-based functional genomics in mammalian cells: reverse genetics coming of age. Oncogene 23, 8401–8409 (2004)CrossRefGoogle Scholar
  151. 151.
    Simoes, R.D., Emmert-Streib, F.: Bagging statistical network inference from large-scale gene expression data. Plos One 7, e33624 (2012)CrossRefGoogle Scholar
  152. 152.
    Slater, P.J.: Maximin facility location. J. Res. NBS B Math. Sci. 79, 107–115 (1975)MathSciNetzbMATHGoogle Scholar
  153. 153.
    Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J.S., Nobel, A., et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 8418–8423 (2003)Google Scholar
  154. 154.
    Sottoriva, A., Spiteri, I., Piccirillo, S.G., Touloumis, A., Collins, V.P., Marioni, J.C., et al.: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 4009–4014 (2013)Google Scholar
  155. 155.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 12123–12128 (2003)Google Scholar
  156. 156.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)CrossRefGoogle Scholar
  157. 157.
    Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., et al.: A human protein- protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005)CrossRefGoogle Scholar
  158. 158.
    Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)CrossRefGoogle Scholar
  159. 159.
    Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.A., Jones, D.T., Konermann, C., et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012)CrossRefGoogle Scholar
  160. 160.
    Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011)CrossRefGoogle Scholar
  161. 161.
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 15545–15550 (2005)Google Scholar
  162. 162.
    Szalay, K.Z., Csermely, P.: Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. Plos One 8, e78059 (2013)CrossRefGoogle Scholar
  163. 163.
    Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform./IEEE ACM 11, 407–418 (2014)CrossRefGoogle Scholar
  164. 164.
    Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13, 136 (2012)CrossRefGoogle Scholar
  165. 165.
    Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.J., Clifford, S.C., et al.: Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465–472 (2012)CrossRefGoogle Scholar
  166. 166.
    Tong, A.H.Y., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)CrossRefGoogle Scholar
  167. 167.
    Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H.M., Xu, H., Xin, X.F., et al.: Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004)CrossRefGoogle Scholar
  168. 168.
    Tschida, B.R., Largaespada, D.A., Keng, V.W.: Mouse models of cancer: sleeping beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin. Cell Dev. Biol. 27, 86–95 (2014)CrossRefGoogle Scholar
  169. 169.
    Uren, A.G., Kool, J., Berns, A., van Lohuizen, M.: Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656–7672 (2005)CrossRefGoogle Scholar
  170. 170.
    Uren, A.G., Kool, J., Matentzoglu, K., de Ridder, J., Mattison, J., van Uitert, M., et al.: Large-scale mutagenesis in p19ARF-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008)CrossRefGoogle Scholar
  171. 171.
    Valencia, A., Pazos, F.: Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373 (2002)CrossRefGoogle Scholar
  172. 172.
    Valente, T.W., Foreman, R.K.: Integration and radiality: measuring the extent of an individual’s connectedness and reachability in a network. Soc. Netw. 20, 89–105 (1998)CrossRefGoogle Scholar
  173. 173.
    Valouev, A., Johnson, D.S., Sundquist, A., Medina, C., Anton, E., Batzoglou, S., et al.: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008)CrossRefGoogle Scholar
  174. 174.
    Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010)Google Scholar
  175. 175.
    Vidal, M., Cusick, M.E., Barabasi, A.L.: Interactome networks and human disease. Cell 144, 986–998 (2011)CrossRefGoogle Scholar
  176. 176.
    Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz Jr., L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339, 1546–1558 (2013)CrossRefGoogle Scholar
  177. 177.
    von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRefGoogle Scholar
  178. 178.
    Wachi, S., Yoneda, K., Wu, R.: Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–4208 (2005)CrossRefGoogle Scholar
  179. 179.
    Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. B-Biol. Sci. 268, 1803–1810 (2001)CrossRefGoogle Scholar
  180. 180.
    Wang, J., Chen, G., Li, M., Pan, Y.: Integration of breast cancer gene signatures based on graph centrality. BMC Syst. Biol. 5(Suppl 3), S10 (2011)CrossRefGoogle Scholar
  181. 181.
    Wang, K., Li, M.Y., Hakonarson, H.: Analysing biological pathways in genome-wide association studies. Nat. Rev. Genet. 11, 843–854 (2010)CrossRefGoogle Scholar
  182. 182.
    Wang, P.W., Qin, J., Qin, Y.M., Zhu, Y., Wang, L.L.Y., Li, M.L.J., et al.: ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 43, W264–W269 (2015)CrossRefGoogle Scholar
  183. 183.
    Wang, S., Sun, H.F., Ma, J., Zang, C.Z., Wang, C.F., Wang, J., et al.: Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515 (2013)CrossRefGoogle Scholar
  184. 184.
    Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005)CrossRefGoogle Scholar
  185. 185.
    Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10, 280–293 (2011)CrossRefGoogle Scholar
  186. 186.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  187. 187.
    Wei, W., Pfeffer, J., Reminga, J., Carley, K.M.: Handling Weighted, Asymmetric, Self- Looped, and Disconnected Networks in ORA (No. CMU-ISR-11-113). Carnegie Mellon University, Pittsburgh (2011)Google Scholar
  188. 188.
    Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, FJ.: Loss of conservation of graph centralities in reverse-engineered transcriptional regulatory networks. In: 16th Applied Stochastic Models and Data Analysis International Conference (ASMDA2015) with Demographics 2015 Workshop (2015)Google Scholar
  189. 189.
    Wu, X.B., Li, S.: Cancer Gene Prediction Using a Network Approach. Chapman & Hall/CRC Mathematical and Computational Biology, pp. 191–212 (2010)Google Scholar
  190. 190.
    Wuchty, S.: Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001)CrossRefGoogle Scholar
  191. 191.
    Wuchty, S., Almaas, E.: Evolutionary cores of domain co-occurrence networks. BMC Evol. Biol. 5, 1–12 (2005)CrossRefGoogle Scholar
  192. 192.
    Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223, 45–53 (2003)MathSciNetCrossRefGoogle Scholar
  193. 193.
    Wuchty, S., Oltvai, Z.N., Barabasi, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. 35, 176–179 (2003)CrossRefGoogle Scholar
  194. 194.
    Xu, J.Z., Li, Y.J.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 22, 2800–2805 (2006)CrossRefGoogle Scholar
  195. 195.
    Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., et al.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5934–5939 (2004)Google Scholar
  196. 196.
    Yook, S.H., Oltvai, Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)CrossRefGoogle Scholar
  197. 197.
    Zellmer, V.R., Zhang, S.Y.: Evolving concepts of tumor heterogeneity. Cell Biosci. 4, 1–8 (2014)CrossRefGoogle Scholar
  198. 198.
    Zhang, L.V., King, O.D., Wong, S.L., Goldberg, D.S., Tong, A.H., Lesage, G., et al.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005)CrossRefGoogle Scholar
  199. 199.
    Zhang, M., Deng, J., Fang, C.V., Zhang, X., Lu, L.J.: Molecular network analysis and applications. In: Alterovitz, G., Ramoni, M. (eds.) Knowledge-Based Bioinformatics: From Analysis to Interpretation, pp. 253. Wiley, Chichester (2011)Google Scholar
  200. 200.
    Zhao, B.Y., Pritchard, J.R., Lauffenburger, D.A., Hemann, M.T.: Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4, 166–174 (2014)CrossRefGoogle Scholar
  201. 201.
    Zhao, H., Liu, T., Liu, L., Zhang, G., Pang, L., Yu, F., et al.: Chromatin states modify network motifs contributing to cell-specific functions. Sci. Rep. 5, 11938 (2015)CrossRefGoogle Scholar
  202. 202.
    Zhao, W., Langfelder, P., Fuller, T., Dong, J., Li, A., Hovarth, S.: Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20, 281–300 (2010)MathSciNetCrossRefGoogle Scholar
  203. 203.
    Zhu, C., Wu, C., Aronow, B.J., Jegga, A.G.: Computational approaches for human disease gene prediction and ranking. Adv. Exp. Med. Biol. 799, 69–84 (2014)CrossRefGoogle Scholar
  204. 204.
    Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Holger Weishaupt
    • 1
    Email author
  • Patrik Johansson
    • 1
  • Christopher Engström
    • 2
  • Sven Nelander
    • 3
  • Sergei Silvestrov
    • 2
  • Fredrik J. Swartling
    • 3
  1. 1.Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Division of Applied Mathematics, School of Education, Culture and CommunicationMälardalen UniversityVästeråsSweden
  3. 3.Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden

Personalised recommendations