Skip to main content

Proposal to Reduce Natural Risks: Analytic Network Process to Evaluate Efficiency of City Planning Strategies

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2016 (ICCSA 2016)

Abstract

Natural hazards have greater social and economic impact in urban areas because urbanization and economic development increase people and assets’ concentration in high-risk prone areas: hazards generate risks in relation to population’s exposure and its physical and economic assets.

Advanced urban planning is one of the involved disciplines in the process of human exposure and risks reduction: defining strategic actions, it can reduce losses following natural disasters and, in the same time, ensure a flexible design able to absorb external impacts, to transform and to adapt itself, increasing urban resilience.

The paper defines two possible strategies of intervention in city as risk mitigation methods: Areal Change and Functional Change.

Authors describe the use of scenario planning and Multicriteria evaluation (ANP method) to deepen suitable strategies at urban level. Moreover, authors introduce the first instruments useful for the future application of the presented method: ideal city modeling and evaluation criteria definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Disaster is a hazardous event that occurs over a limited time in a defined area.

  2. 2.

    Catastrophe is a massive disaster that requires significant expenditure of money and a long time for recovery.

  3. 3.

    For each pairwise matrix, it defines: principle normalized eigenvalues; non-weighted supermatrix; weighted supermatrix, limit supermatrix and the alternatives’ ranking.

  4. 4.

    Authors choose Pavia (medium sized city located in Northern Italy) to apply the ideal city modeling because it is characterized by the typical elements of European historical cities and it has a database with detailed urban information that authors can easily consult. [30].

  5. 5.

    High-density ≥ 6 \( [{{\text{m}^{3} } \mathord{\left/ {\vphantom {{\text{m}^{3} } {\text{m}^{2} }}} \right. \kern-0pt} {\text{m}^{2} }}] \); Medium-density between 2.5 and 6 \( [{{\text{m}^{3} } \mathord{\left/ {\vphantom {{\text{m}^{3} } {\text{m}^{2} }}} \right. \kern-0pt} {\text{m}^{2} }}] \); Low-density ≤ 2.5 \( [{{\text{m}^{3} } \mathord{\left/ {\vphantom {{\text{m}^{3} } {\text{m}^{2} }}} \right. \kern-0pt} {\text{m}^{2} }}] \).

  6. 6.

    Data from Pavia Camera di Commercio price list [31].

  7. 7.

    Ideals: final normalized judgments in the 0–1 gap; Normals: final normalized judgments related to their sum; Raw: values from priority vector of limit supermatrix.

References

  1. UNISDR (United Nations International Strategy for Disaster Reduction): terminology on disaster risk reduction. In: International Strategy for Disaster Reduction Secretariat, Ginevra (2009). http://www.unisdr.org/eng/terminology/terminology-2009-eng.html

  2. Blaikie, P., Cannon, T., Davis, I., et al.: At Risk: Natural Hazards, People’s Vulnerability and Disasters. Routledge, Londra (1994)

    Google Scholar 

  3. Gotangco, K., Perez, R.: Understanding vulnerability ad risk: the CCA-DRM nexus. Klima, Climate Change Center, Manila (2010)

    Google Scholar 

  4. Macchi, S., Tiepolo, M. (eds.): Climate Change Vulnerability in Southern African Cities. Springer Climate. Springer International Publishing, Switzerland (2014a)

    Google Scholar 

  5. DRM (Disaster Risk Management). http://www.worldbank.org/en/topic/disasterriskmanagement

  6. IPCC (Intergovernmental Panel on Climate Change): Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK (2001)

    Google Scholar 

  7. Verheyen, R.: Climate Change Damage and International Law: Prevention Duties and State Responsibility. Martinus Nijhoff, Boston (2005)

    Google Scholar 

  8. Renn, O.: Social theories of risk. In: Krimsky, S., Golding, D. (eds.) Social Theories of Risk. Praeger, Westport (1992)

    Google Scholar 

  9. Mileti, D.S., Passerini, E.: A social explanation of urban relocation after earthquakes. Int. J. Mass Emerg. Disaster 14, 97–110 (1996)

    Google Scholar 

  10. Perry, R.W., Lindell, M.K.: Principles for managing community relocation as a hazard mitigation measure. J. Contingencies Crisis Manag. 5, 49–59 (1997)

    Article  Google Scholar 

  11. Menoni, S., Pesaro, G.: Is relocation a good answer to prevent risk? Criteria to help decision makers choose candidates for relocation in areas exposed to high hydrogeological hazards. Disaster Prev. Manag. 17, 33–53 (2008)

    Article  Google Scholar 

  12. De Lotto, R., Morelli di Popolo, C., Morettini, S., Venco, E.M.: La valutazione di scenari flessibili per la riduzione del rischio naturale. Planum. J. Urbanism 27, Atelier 10 (2013)

    Google Scholar 

  13. Schoemaker, P.J.H.: Scenario planning: a tool for strategic thinking. Sloan Manag. Rev. 36, 25–40 (1995)

    Google Scholar 

  14. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psycol., Washington (1977)

    MATH  Google Scholar 

  15. Saaty, T.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990)

    Article  MATH  Google Scholar 

  16. Saaty, T.: The Analytic Network Process. RWS Publications, Pittsburgh (1997)

    Google Scholar 

  17. Saaty, T.: Decision Making with Dependance and Feedback: The Analytic Network Process. RWS Publications, Pittsburgh (2005)

    Google Scholar 

  18. Saaty, T.: The analytic hierarchy and analytic network processes for measurement of intangible criteria and for decision-making. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2005)

    Google Scholar 

  19. Ferretti, V.: Multicriteria Analysis. Interview with Thomas Saaty. In: Valori e Valutazioni, Siev 13, 25–32 (2014)

    Google Scholar 

  20. Saaty, T., Vargas, L.G.: Decision Making with the Analytic Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks. Springer, New York (2006)

    MATH  Google Scholar 

  21. Bottero, M., Lami, I., Lombardi, P.: Analytic Network Process. La valutazione di scenari di trasformazione urbana e territoriale. Alinea Editrice, Firenze (2008)

    Google Scholar 

  22. Bottero, M., Lami, I., Abastante, F., Greco, S.: The role of analytic network process and dominance-based rough set approach in strategic decisions for territorial transformations. Int. J. Multicriteria Decis. Making 3(2/3), 212–235 (2012)

    Google Scholar 

  23. Meadows, D.: Indicators and information systems for suitable development. The Sustainability Institute (1998). http://sustainer.org/

  24. Nijkamp, P., Rietveld, P., Voogd, H.: Multicriteria Evaluation in Physical Planning. North Holland Publishing Company, Amsterdam (1990)

    Google Scholar 

  25. Lee, M.-C.: The analytic hierarchy and the network process in multicriteria decision making: performance evaluation and selection key performance indicators based on ANP model. In: Crisan, M.: Convergence and Hybrid Information Technologies, InTech (2010)

    Google Scholar 

  26. Bottero, M., et al.: Integrating multicriteria evaluation and data visualization as a problem structuring approach to support territorial transformation projects. EJDC (Euro J. Decis. Process.). Springer (2014)

    Google Scholar 

  27. Voogd, H.: Multicriteria Evaluation for Urban and Regional Planning. Pion Limites, London (1983)

    Google Scholar 

  28. Adams, W.J., Saaty, R.W.: Software super decisions (1993–2003). http://www.superdecisions.com/

  29. De Lotto, R., Morelli di Popolo, C.: Opportunità e limiti nella dimensione fisica della città flessibile. Planum. The Journal of Urbanism 25, Atelier 7 (2012)

    Google Scholar 

  30. De Lotto, R.: Città e pianificazione. La tradizione di Pavia e le opportunità per il futuro. Maggioli Editore, Politecnica, Santarcangelo di Romagna, RN (2008)

    Google Scholar 

  31. Camera di Commercio industria, artigianato e agricoltura di Pavia: Prezziario opere edili della Provincia di Pavia, Pavia (2015)

    Google Scholar 

  32. Dwyer, A., Zoppou, C., Day, S., Nielsen, O., Roberts, S.: Quantifying Social Vulnerability: A methodology for identifying those at risk to natural hazards, Geoscience Australia Technical Record, Canberra (2004)

    Google Scholar 

  33. Kaynia, A.M., Uzielli, M., Nadim, F., Lacasse S.: A conceptual frame work for quantitative estimation of physical vulnerability to landslides. Eng. Geol. 102, 251–256 (2008)

    Article  Google Scholar 

  34. De La Cruz-Reyna, S.: Long term probabilistic analysis of future explosive eruptions. In: Scarpa, R., Tilling, R.I. (eds.) Monitoring and Mitigation of Volcano Hazards, pp. 599–629. Springer, Berlin (1996)

    Chapter  Google Scholar 

  35. Davidson, R.: An urban earthquake disaster risk index, the John A Blume earthquake engineering center, department of civil engineering, Report no. 121. Stanford University, Stanford (1997)

    Google Scholar 

  36. IADB, Hahn, H., Villagrán de León, J.C.: Comprehensive risk management by communities and local governments. Indicators and other disaster risk management instruments for communities and local governments (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Lotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

De Lotto, R., Gazzola, V., Gossenberg, S., Morelli di Popolo, C., Venco, E.M. (2016). Proposal to Reduce Natural Risks: Analytic Network Process to Evaluate Efficiency of City Planning Strategies. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9789. Springer, Cham. https://doi.org/10.1007/978-3-319-42089-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42089-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42088-2

  • Online ISBN: 978-3-319-42089-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics