Skip to main content

Direct Sequential Based Firefly Algorithm for the \(\alpha \)-Pinene Isomerization Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9786))

Abstract

The problem herein addressed is a parameter estimation problem of the \(\alpha \)-pinene process. The state variables of this bioengineering process satisfy a set of differential equations and depend on a set of unknown parameters. A dynamic system based parameter estimation problem aiming to estimate the model parameter values in a way that the predicted state variables best fit the experimentally observed state values is used. A numerical direct method, known as direct sequential procedure, is implemented giving rise to a finite bound constrained nonlinear optimization problem, which is solved by the metaheuristic firefly algorithm (FA). A Matlab™ programming environment is developed with the mathematical model and the computational application of the method. The results produced by FA, when compared to those of the fmincon function and other metaheuristics, are competitive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Matlab is a registered trademark of the MathWorks, Inc.

References

  1. Banga, J.R., Balsa-Canto, E., Moles, C.G., Alonso, A.A.: Improving food processing using modern optimization methods. Trends Food Sci. Tech. 14(4), 131–144 (2003)

    Article  Google Scholar 

  2. Grossmann, I.E. (ed.): Global Optimization in Engineering Design, Nonconvex Optimization and Its Applications, vol. 9. Springer Science & Business Media (1996)

    Google Scholar 

  3. Vanrolleghem, P.A., Dochain, D.: Bioprocess model identification. In: Van Impe, J.F.M., Vanrolleghem, P.A., Iserentant, D.M. (eds.) Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes, pp. 251–318. Kluwer Academic Publ. (1998)

    Google Scholar 

  4. Rodríguez-Fernández, M.: Modelado e Identificación de Bioprocesos. Ph.D. thesis, University of Vigo, Spain (2006)

    Google Scholar 

  5. Rodriguez-Fernandez, M., Mendes, P., Banga, J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83(2–3), 248–265 (2006)

    Article  Google Scholar 

  6. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Constrained nonlinear programming. In: Handbooks in Operations Research and Management Science, vol. 1, Optimization, pp. 171–210 (1989)

    Google Scholar 

  7. Banga, J.R., Balsa-Canto, E., Moles, C.G., Alonso, A.A.: Dynamic optimization of bioreactors: a review. Proc.-Indian National Sci. Acad. Part A 69(3/4), 257–266 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Esposito, W.R., Floudas, C.A.: Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39(5), 1291–1310 (2000)

    Article  Google Scholar 

  9. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003)

    Article  Google Scholar 

  10. Moles, C.G., Gutierrez, G., Alonso, A.A., Banga, J.R.: Integrated process design and control via global optimization: a wastewater treatment plant case study. Chem. Eng. Res. Des. 81(5), 507–517 (2003)

    Article  Google Scholar 

  11. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 1, pp. 39–43, New York, NY (1995)

    Google Scholar 

  12. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Lin, Y., Stadtherr, M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45(25), 8438–8448 (2006)

    Article  Google Scholar 

  14. Miro, A., Pozo, C., Guillén-Gosálbez, G., Egea, J.A., Jiménez, L.: Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinf. 13, 90 (2012)

    Article  Google Scholar 

  15. Polisetty, P.K., Voit, E.O., Gatzke, E.P.: Identification of metabolic system parameters using global optimization methods. Theor. Biol. Med. Model. 3, 4 (2006)

    Article  Google Scholar 

  16. Balsa-Canto, E., Peifer, M., Banga, J.R., Timmer, J., Fleck, C.: Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst. Biol. 2, 26 (2008)

    Article  Google Scholar 

  17. Box, G., Hunter, W., MacGregor, J., Erjavec, J.: Some problems associated with the analysis of multiresponse data. Technometrics 15(1), 33–51 (1973)

    Article  MATH  Google Scholar 

  18. Rodriguez-Fernandez, M., Egea, J.A., Banga, J.R.: Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinf. 7, 483 (2006)

    Article  Google Scholar 

  19. Fuguitt, R.E., Hawkins, J.E.: Rate of the thermal isomerization of \(\alpha \)-pinene in the liquid phase. J. Am. Chem. Soc. 69(2), 319–322 (1947)

    Article  Google Scholar 

  20. Hunter, W., McGregor, J.: The estimation of common parameters from several responses: Some actual examples. Unpublished Report, Department of Statistics. University of Winsconsin (1967)

    Google Scholar 

  21. Srinivasan, B., Palanki, S., Bonvin, D.: Dynamic optimization of batch processes: I. Characterization of the nominal solution. Comput. Chem. Eng. 27(1), 1–26 (2003)

    Article  Google Scholar 

  22. Banga, J.R., Balsa-Canto, E., Moles, C.G., Alonso, A.A.: Dynamic optimization of bioprocesses: efficient and robust numerical strategies. J. Biotechnol. 117, 407–419 (2005)

    Article  Google Scholar 

  23. Schlegel, M., Marquardt, W.: Direct sequential dynamic optimization with automatic switching structure detection. In: Shah, S.L., MacGregor, J. (eds.) Dynamics and Control of Process Systems 2004 (DYCOPS-7), vol. 1, pp. 419–424. Elsevier IFAC Publ. (2005)

    Google Scholar 

  24. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS-SIAM Series on Optimization (2010)

    Google Scholar 

  25. Zhigljavsky, A., \(\breve{Z}\)ilinskas, A.: Stochastic Global Optimization. Springer Optimization and its Applications. Springer, New York (2008)

    Google Scholar 

  26. Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)

    Article  Google Scholar 

  27. Tsai, K.-Y., Wang, F.-S.: Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21(7), 1180–1188 (2005)

    Article  Google Scholar 

  28. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: motivation, analysis, and first results. Complex Syst. 3(5), 493–530 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–72 (1992)

    Article  Google Scholar 

  30. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity, Oxford University Press (1999)

    Google Scholar 

  31. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  32. Millonas, M.M.: Swarms, phase transitions, and collective intelligence. In: Langton, C.G. (ed.) Artificial Life III, vol. XVII, pp. 417–445. Addison-Wesley, Reading (1994)

    Google Scholar 

  33. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Bristol (2010)

    Google Scholar 

  34. Yang, X.-S.: Biology-derived algorithms in engineering optimization. In: Olariu, S., Zomaya, A.Y. (eds.) Handbook of Bioinspired Algorithms and Applications, pp. 589–600. Chapman & Hall, Boca Raton (2005)

    Google Scholar 

  35. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  36. Egea, J.A., Rodríguez-Fernández, M., Banga, J.R., Marti, R.: Scatter search for chemical and bioprocess optimization. J. Glob. Optim. 37(3), 481–503 (2007)

    Article  MATH  Google Scholar 

  37. Rocha, A.M.A.C., Silva, A., Rocha, J.G.: A new competitive implementation of the electromagnetism-like algorithm for global optimization. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 506–521. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  38. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking Optimization Software with COPS 3.0. Argonne National Laboratory Technical report ANL/MCS-TM-273 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank two anonymous referees for their comments and suggestions. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia, within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria A. C. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rocha, A.M.A.C., Martins, M.C., Costa, M.F.P., Fernandes, E.M.G.P. (2016). Direct Sequential Based Firefly Algorithm for the \(\alpha \)-Pinene Isomerization Problem. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics