Skip to main content

A Nonlinear Multiscale Viscosity Method to Solve Compressible Flow Problems

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Abstract

In this work we present a nonlinear multiscale viscosity method to solve inviscid compressible flow problems in conservative variables. The basic idea of the method consists of adding artificial viscosity adaptively in all scales of the discretization. The amount of viscosity added to the numerical model is based on the YZ\(\beta \) shock-capturing parameter, which has the property of being mesh and numerical solution dependent. The subgrid scale space is defined using bubble functions whose degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the resolved scales. This new numerical formulation can be considered a free parameter and self adaptive method. Performance and accuracy comparisons with the well known method SUPG combined with shock capturing operators are conducted based on benchmark 2D problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbassi, H., Mashayek, F., Jacobs, G.B.: Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method. Comput. Fluids 98, 152–163 (2014)

    Article  MathSciNet  Google Scholar 

  2. Arruda, N.C.B., Almeida, R.C., do Carmo, E.G.D.: Dynamic diffusion formulations for advection dominated transport problems. Mecânica Computacional 29, 2011–2025 (2010)

    Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York, Berlin, Paris (2002)

    Book  MATH  Google Scholar 

  4. Brooks, A.N., Hughes, T.J.R.: Streamline upwind petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Catabriga, L., de Souza, D.F., Coutinho, A.L., Tezduyar, T.E.: Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZ\(\beta \) shock-capturing. J. Appl. Mech. 76(2), 021208–021208-7 (2009). ASME

    Google Scholar 

  6. Franca, L.P., Nesliturk, A., Stynes, M.: On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method. Comput. Methods Appl. Mech. Eng. 166, 35–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galeão, A., Carmo, E.: A consistent approximate upwind petrov-galerkin method for convection-dominated problems. Comput. Methods Appl. Mech. Eng. 68, 83–95 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gravemeier, V., Gee, M.W., Kronbichler, M., Wall, W.A.: An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow. Comput. Methods Appl. Mech. Eng. 199(13), 853–864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations. Comput. Methods Appl. Mech. Eng. 45(1), 217–284 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hughes, T.J.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    Article  MATH  Google Scholar 

  12. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (sold) methods for convection-diffusion equations: part i-a review. Comput. Methods Appl. Mech. Eng. 196(17), 2197–2215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nassehi, V., Parvazinia, M.: A multiscale finite element space-time discretization method for transient transport phenomena using bubble functions. Finite Elem. Anal. Des. 45(5), 315–323 (2009)

    Article  MathSciNet  Google Scholar 

  14. Rispoli, F., Saavedra, R., Corsini, A., Tezduyar, T.E.: Computation of inviscid compressible flows with the V-SGS stabilization and YZ\(\beta \) shock-capturing. Int. J. Numer. Methods Fluids 54(6–8), 695–706 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Santos, I.P., Almeida, R.C.: A nonlinear subgrid method for advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 196, 4771–4778 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sedano, R.Z., Bento, S.S., Lima, L.M., Catabriga, L.: Predictor-multicorrector schemes for the multiscale dynamic diffusion method to solve compressible flow problems. In: CILAMCE2015 - XXXVI Ibero-Latin American Congress on Computational Methods in Engineering, November 2015

    Google Scholar 

  17. Tezduyar, T.E.: Determination of the stabilization and shock-capturing parameters in supg formulation of compressible flows. In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS (2004)

    Google Scholar 

  18. Tezduyar, T.E.: Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput. Fluids 36(2), 191–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods in Appl. Mech. Eng. 195(13–16), 1621–1632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tezduyar, T.E., Senga, M.: SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-Capturing. Comput. Fluids 36(1), 147–159 (2007)

    Article  MATH  Google Scholar 

  21. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, Heidelberg (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by CNPq, CAPES and FAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Souza Bento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bento, S.S., de Lima, L.M., Sedano, R.Z., Catabriga, L., Santos, I.P. (2016). A Nonlinear Multiscale Viscosity Method to Solve Compressible Flow Problems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics