Skip to main content

Non-coding RNAs Enabling Prognostic Stratification and Prediction of Therapeutic Response in Colorectal Cancer Patients

  • Chapter
  • First Online:
Non-coding RNAs in Colorectal Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 937))

Abstract

Colorectal cancer (CRC) is a heterogeneous disease and current treatment options for patients are associated with a wide range of outcomes and tumor responses. Although the traditional TNM staging system continues to serve as a crucial tool for estimating CRC prognosis and for stratification of treatment choices and long-term survival, it remains limited as it relies on macroscopic features and cases of surgical resection, fails to incorporate new molecular data and information, and cannot perfectly predict the variety of outcomes and responses to treatment associated with tumors of the same stage. Although additional histopathologic features have recently been applied in order to better classify individual tumors, the future might incorporate the use of novel molecular and genetic markers in order to maximize therapeutic outcome and to provide accurate prognosis. Such novel biomarkers, in addition to individual patient tumor phenotyping and other validated genetic markers, could facilitate the prediction of risk of progression in CRC patients and help assess overall survival. Recent findings point to the emerging role of non-protein-coding regions of the genome in their contribution to the progression of cancer and tumor formation. Two major subclasses of non-coding RNAs (ncRNAs), microRNAs and long non-coding RNAs, are often dysregulated in CRC and have demonstrated their diagnostic and prognostic potential as biomarkers. These ncRNAs are promising molecular classifiers and could assist in the stratification of patients into appropriate risk groups to guide therapeutic decisions and their expression patterns could help determine prognosis and predict therapeutic options in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vladimír Janout HK. Epidemiology of colorectal cancer. Biomed Papers. 2001;145(1):5–10.

    Article  Google Scholar 

  2. Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104–17.

    Article  PubMed  Google Scholar 

  3. World Cancer Research Fund and American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington, D.C.: 2007.

    Google Scholar 

  4. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  5. Muratore A, Zorzi D, Bouzari H, Amisano M, Massucco P, Sperti E, et al. Asymptomatic colorectal cancer with un-resectable liver metastases: immediate colorectal resection or up-front systemic chemotherapy? Ann Surg Oncol. 2007;14(2):766–70.

    Article  PubMed  Google Scholar 

  6. Van Cutsem E, Nordlinger B, Adam R, Köhne CH, Pozzo C, Poston G, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer. 2015;42(14):2212–21.

    Article  Google Scholar 

  7. Cheng HY, Zhang L, Cogdell D, Zheng H, Schetter A, Nykter M, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011;6:e17745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pichler M, Winter E, Stotz M, Eberhard K, Samonigg H, Lax S, et al. Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer. 2012;106:1826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer J. 2012;18:244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gunderson LL, Jessup JM, Sargent DJ, Greene FL, Stewart AK. Revised TN categorization for colon cancer based on national survival outcomes data. J Clin Oncol. 2010;28:264–71.

    Article  PubMed  Google Scholar 

  11. Poste G. Bring on the biomarkers. Nature. 2011;469:2.

    Article  CAS  Google Scholar 

  12. Poste G, Carbone DP, Parkinson DR, Verweij J, Hewitt SM, Jessup JM. Leveling the playing field: bringing development of biomarkers and molecular diagnostics up to the standards for drug development. Clin Cancer Res. 2012;18:1515–23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6:140–6.

    Article  CAS  PubMed  Google Scholar 

  14. Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, et al. MicroRNAs in colorectal cancer: small molecules with big functions. Cancer Lett. 2015;360:89–105.

    Article  CAS  PubMed  Google Scholar 

  15. Thorsteinsson M, Jess P. The clinical significance of circulating tumor cells in non-metastatic colorectal cancer – a review. Eur J Surg Oncol. 2011;37:1–7.

    Article  Google Scholar 

  16. Klump B, Nehls O, Okech T, Hsieh CJ, Gaco V, Gittinger FS, et al. Molecular lesions in colorectal cancer: impact on prognosis? Original data and review of the literature. Int J Colorectal Dis. 2004;19:23–42.

    Article  CAS  PubMed  Google Scholar 

  17. Wallner M, Herbst A, Behrens A, Crispin A, Stieber P, Goke B, et al. Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res. 2006;12:7347–52.

    Article  CAS  PubMed  Google Scholar 

  18. Chua YJ, Zalcberg JR. Progress and challenges in the adjuvant treatment of stage II and III colon cancers. Expert Rev Anticancer Ther. 2008;8(4):595–604.

    Article  CAS  PubMed  Google Scholar 

  19. Wolpin BM, Mayer RJ. Systemic treatment of colorectal cancer. Gastroenterology. 2008;134(5):1296–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerra A, Borda F, Javier Jimenez F, Martinez-Penuela JM, Larrinaga B. Multivariate analysis of prognostic factors in resected colorectal cancer: a new prognostic index. Eur J Gastroenterol Hepatol. 1998;10:51–8.

    Article  CAS  PubMed  Google Scholar 

  21. Steinberg SM, Barwick KW, Stablein DM. Importance of tumor pathology and morphology in patients with surgically resected colon cancer. Findings from the Gastrointestinal Tumor Study Group. Cancer. 1986;58:1340–5.

    Article  CAS  PubMed  Google Scholar 

  22. Wolters U, Stutzer H, Keller HW, Schroder U, Pichlmaier H. Colorectal cancer-a multivariate analysis of prognostic factors. Eur J Surg Oncol. 1996;22:592–7.

    Article  CAS  PubMed  Google Scholar 

  23. Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17(24):7723–31.

    Article  CAS  PubMed  Google Scholar 

  24. Xiao G, Tang H, Wei W, Li J, Ji L, Ge J. Aberrant Expression of MicroRNA-15a and MicroRNA-16 Synergistically Associates with Tumor Progression and Prognosis in Patients with Colorectal Cancer. Gastroenterol Res Pract. 2014;8.

    Google Scholar 

  25. Erstad DJ, Tumusiime G, Cusack J,Jr. Prognostic and Predictive Biomarkers in Colorectal Cancer: Implications for the Clinical Surgeon. Annals of surgical oncology. 2015;22(11).

    Google Scholar 

  26. Compton CC, Fielding LP, Burgart LJ, Conley B, Cooper HS, Hamilton SR, et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000;124:979–94.

    CAS  PubMed  Google Scholar 

  27. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecanrefractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45.

    Article  CAS  PubMed  Google Scholar 

  28. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28(31):4697–705.

    Article  CAS  PubMed  Google Scholar 

  29. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28(31):4706–13.

    Article  CAS  PubMed  Google Scholar 

  30. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.

    Article  CAS  PubMed  Google Scholar 

  31. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorecal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  CAS  PubMed  Google Scholar 

  32. Lievre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254–61.

    Article  CAS  PubMed  Google Scholar 

  34. Madhavan D, Zucknick M, Wallwiener M, Cu K, Modugno C, Scharpff M, et al. Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res. 2010;18:5972–82.

    Article  CAS  Google Scholar 

  35. Duffy MJ, O’Donovan N, Crown J. Use of molecular markers for predicting therapy response in cancer patients. Cancer Treat Rev. 2011;37:151–9.

    Article  CAS  PubMed  Google Scholar 

  36. Huang RS, Ratain MJ. Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J Clin. 2009;59:42–55.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–52.

    Article  CAS  PubMed  Google Scholar 

  38. Hrdlickova B, de Almeida RC, Borek Z, Withoff S. Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease. Biochim Biophys Acta. 1842;2014:1910–22.

    Google Scholar 

  39. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  PubMed  Google Scholar 

  40. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.

    CAS  PubMed  Google Scholar 

  43. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and nontumoral tissues. Mol Cancer. 2006;5:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T, et al. The colorectal microRNAome. Proc Natl Acad Sci U S A. 2006;103:3687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Monzo M, Navarro A, Bandres E, Artells R, Moreno I, Gel B, et al. Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res. 2008;18:823–33.

    Article  CAS  PubMed  Google Scholar 

  47. Earle JS, Luthra R, Romans A, Abraham R, Ensor J, Yao H, et al. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn. 2010;12:433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66:7390–4.

    Article  CAS  PubMed  Google Scholar 

  49. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD, et al. Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood. 2009;114:3872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lebanony D, Benjamin H, Gilad S, Ezagouri M, Dov A, Ashkenzai K, et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol. 2009;27:2030–7.

    Article  CAS  PubMed  Google Scholar 

  52. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26:462–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu W, Liu X, He J, Chen D, Hunag Y, Zhang YK. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer. 2011;11:393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Suet-Feung C, Dunning M, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rothe F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, et al. Global microRNA expression profi ling identifi es MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011;6:e20980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lanza G, Ferracin M, Gafa R, Veronese A, Spizzo R, Pichiorri F, et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer. 2007;6:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, et al. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer. 2012;51:1–9.

    Article  CAS  PubMed  Google Scholar 

  58. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  59. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.

    Article  CAS  PubMed  Google Scholar 

  60. Blahna MT, Hata A. Regulation of miRNA biogenesis as an integrated component of growth factor signaling. Curr Opin Cell Biol. 2013;25:233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun X, Jiao X, Pestell TG, Fan C, Qin S, Mirabelli E, et al. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene. 2013. doi:10.1038/onc.2013.492 [Epub ahead of print].

    Google Scholar 

  62. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454:56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, et al. Clinicopathological significance of microRNA-31, −143 and −145 expression in colorectal cancer. Dis Markers. 2009;26(1):27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53.

    Article  CAS  PubMed  Google Scholar 

  65. Luo XY, Burwinkel B, Tao S, Brenner H. MicroRNA signatures: novel biomarker for colorectal cancer? Cancer Epidemiol Biomarkers Prev. 2011;20:1272–86.

    Article  CAS  PubMed  Google Scholar 

  66. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  PubMed  Google Scholar 

  67. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 2007;72(5–6):397–402.

    CAS  PubMed  Google Scholar 

  68. Catela Ivkovic T, Aralica G, Cacev T, Loncar B, Kapitanovic S. miR-106a overexpression and pRB downregulation in sporadic colorectal cancer. Exp Mol Pathol. 2013;94:148–54.

    Article  CAS  PubMed  Google Scholar 

  69. Feng B, Dong TT, Wang LL, Zhou HM, Zhao HC, Dong F, et al. Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One. 2012;7:e43452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bullock MD, Pickard K, Mitter R, Sayan AE, Primrose JN, Ivan C, et al. Stratifying risk of recurrence in stage II colorectal cancer using deregulated stromal and epithelial microRNAs. Oncotarget. 2015;6(9):7262–79.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, Perez-Plasencia C, Del Moral-Hernandez O, Castaneda-Ortiz EJ, et al. MetastamiRs: non-coding microRNAs driving cancer invasion and metastasis. Int J Mol Sci. 2012;13:1347–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu CW, Ng SSM, Dong YJ, Ng SC, Leung WW, Lee CW, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012;61:739–45.

    Article  CAS  PubMed  Google Scholar 

  73. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68:5795–802.

    Article  CAS  PubMed  Google Scholar 

  74. Yamada A, Horimatsu T, Okugawa Y, Nishida N, Honjo H, Ida H, et al. Serum miR-21, miR-29a, and miR-125b are promising biomarkers for the early detection of colorectal neoplasia. Clin Cancer Res. 2015;21(18):4234–42.

    Article  CAS  PubMed  Google Scholar 

  75. Fodde R. The APC, gene in colorectal cancer. Eur J Cancer. 2002;38(7):867–71.

    Article  CAS  PubMed  Google Scholar 

  76. Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  77. Koga Y, Yasunaga M, Takahashi A, Kuroda J, Moriya Y, Akasu T, et al. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res. 2010;3:1435–42.

    Article  Google Scholar 

  78. Jérôme T, Laurie P, Louis B, Pierre C. Enjoy the silence: the story of let-7 microRNA and cancer. Curr Genomics. 2007;8:229–33.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012;22:474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Drebber U, Lay M, Wedemeyer I, Vallböhmer D, Bollschweiler E, Brabender J, et al. Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int J Oncol. 2011;39:409–15.

    PubMed  Google Scholar 

  81. Chang KH, Miller N, Kheirelseid EA, Lemetre C, Ball GR, Smith MJ, et al. MicroRNA signature analysis in colorectal cancer: identification of expression profiles in stage II tumors associated with aggressive disease. Int J Colorectal Dis. 2011;26:1415–22.

    Article  PubMed  Google Scholar 

  82. Kahlert C, Klupp F, Brand K, Lasitschka F, Diederichs S, Kirchberg J, et al. Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases. Cancer Sci. 2011;102:1799–807.

    Article  CAS  PubMed  Google Scholar 

  83. Kamatani A, Nakagawa Y, Akao Y, Maruyama N, Nagasaka M, Shibata T, et al. Downregulation of anti-oncomirs miR-143/145 cluster occurs before APC gene aberration in the development of colorectal tumors. Med Mol Morphol. 2013;46:166–71.

    Article  CAS  PubMed  Google Scholar 

  84. Gregersen LH, Jacobsen A, Frankel LB, Wen J, Krogh A, Lund AH. MicroRNA-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer. 2012;12:232.

    Article  CAS  PubMed  Google Scholar 

  85. Pichler M, Winter E, Stotz M, Eberhard K, Samonigg H, Lax S, et al. Down-regulation of KRAS-interacting miRNA- 143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer. 2012;106:1826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer. 2012;11:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Li JM, Zhao RH, Li ST, Xie CX, Jiang HH, Ding WJ, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33:24–9.

    PubMed  Google Scholar 

  88. Chen DT, Hernandez JM, Shibata D, McCarthy SM, Humphries LA, Clark W, et al. Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma. J Gastrointest Surg. 2012;16:905–12.

    Article  PubMed  Google Scholar 

  89. Qian X, Yu J, Yin Y, He J, Wang L, Li Q, et al. MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle. 2013;12:1385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Song Y, Xu Y, Wang Z, Chen Y, Yue Z, Gao P, et al. MicroRNA-148b suppresses cell growth by targeting cholecystokinin-2 receptor in colorectal cancer. Int J Cancer. 2012;131:1042–51.

    Article  CAS  PubMed  Google Scholar 

  91. Tang JT, Wang JL, Du W, Hong J, Zhao SL, Wang YC, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis. 2011;32:1207–15.

    Article  CAS  PubMed  Google Scholar 

  92. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One. 2011;6:e17745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brink M, de Goeij AF, Weijenberg MP, Roemen GM, Lentjes MH, Pachen MM, et al. K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis. 2003;24:703–10.

    Article  CAS  PubMed  Google Scholar 

  94. Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res. 2010;16:790–9.

    Article  CAS  PubMed  Google Scholar 

  95. Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M, Hanson JE, et al. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis. 2012;29:123–32.

    Article  CAS  PubMed  Google Scholar 

  96. Gusev Y, Brackett DJ. MicroRNA expression profiling in cancer from a bioinformatics prospective. Expert Rev Mol Diagn. 2007;7:787–92.

    Article  CAS  PubMed  Google Scholar 

  97. Karim BO, Ali SZ, Landolfi JA, Mann JF, Liu G, Christian A, et al. Cytomorphologic differentiation of benign and malignant mammary tumors in fine needle aspirate specimens from irradiated female Sprague–Dawley rats. Vet Clin Pathol. 2008;37:229–36.

    Article  PubMed  Google Scholar 

  98. Liu A, Tetzlaff MT, Vanbelle P, Elder D, Feldman M, Tobias JW, et al. MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. Int J Clin Exp Pathol. 2009;2:519–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  101. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  102. Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 2008;68(15):6416–24.

    Article  CAS  PubMed  Google Scholar 

  103. Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, Silverstein KA, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer. 2009;9:401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Akao Y, Nakagawa Y, Naoe T. MicroRNA-143 and −145 in colon cancer. DNA Cell Biol. 2007;26:311–20.

    Article  CAS  PubMed  Google Scholar 

  105. Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, et al. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer. 2009;101(4):707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA 32 and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang JX, Song W, Chen ZH, Wei JH, Liao YJ, Lei J, et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 2013;14:1295–306.

    Article  CAS  PubMed  Google Scholar 

  108. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27:5848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leupold JH, Yang HS, Colburn NH, Asangani I, Post S, Allgayer H. Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene. 2007;26:4550–62.

    Article  CAS  PubMed  Google Scholar 

  110. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299:425–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Bullock MD, Pickard KM, Nielsen BS, Sayan AE, Jenei V, Mellone M, et al. Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death Dis. 2013;4:e684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu Y, Sarkar FH, Majumdar AP. Down-regulation of miR-21 induces differentiation of chemoresistant colon cancer cells and enhances susceptibility to therapeutic regimens. Trans Oncol. 2013;6:180–6.

    Article  Google Scholar 

  114. Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis. 2012;33:68–76.

    Article  PubMed  CAS  Google Scholar 

  115. Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013;42:219–28.

    CAS  PubMed  Google Scholar 

  116. Schee K, Boye K, Abrahamsen TW, Fodstad Ø, Flatmark K. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer. 2012;12:505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kanaan Z, Rai SN, Eichenberger MR, Roberts H, Keskey B, Pan J, Galandiuk S. Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 2012;256:544–51.

    Article  PubMed  Google Scholar 

  118. Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, et al. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med. 2012;16(11):2655–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yamashita S, Yamamoto H, Mimori K, Nishida N, Takahashi H, Haraguchi N, et al. MicroRNA-372 is associated with poor prognosis in colorectal cancer. Oncology. 2012;82:205–12.

    CAS  PubMed  Google Scholar 

  120. Liu K, Li G, Fan C, Zhou X, Wu B, Li J. Increased expression of microRNA-21 and its association with chemotherapeutic response in human colorectal cancer. J Int Med Res. 2011;39:2288–95.

    Article  CAS  PubMed  Google Scholar 

  121. Horiuchi A, Iinuma H, Akahane T, Shimada R, Watanabe T. Prognostic significance of PDCD4 expression and association with microRNA-21 in each Dukes’ stage of colorectal cancer patients. Oncol Rep. 2012;27:1384–92.

    CAS  PubMed  Google Scholar 

  122. Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 2010;79:313–20.

    Article  CAS  PubMed  Google Scholar 

  123. Kulda V, Pesta M, Topolcan O, Liska V, Treska V, Sutnar A, et al. Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet. 2010;200(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  124. Nielsen BS, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, et al. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 2011;28(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  125. Schetter AJ, Nguyen GH, Bowman ED, Mathe EA, Yuen ST, Hawkes JE, et al. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res. 2009;15(18):5878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z, et al. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer. 2012;107:352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nishida N, Nagahara M, Sato T, Mimori K, Sudo T, Tanaka F, et al. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clin Cancer Res. 2012;18:3054–70.

    Article  CAS  PubMed  Google Scholar 

  128. Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T, et al. Prognostic values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol. 2012;106:232–7.

    Article  CAS  PubMed  Google Scholar 

  129. Slaby O, Sachlova M, Brezkova V, Hezova R, Kovarikova A, Bischofová S, et al. Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer. 2013;65:247–54.

    Article  CAS  PubMed  Google Scholar 

  130. Ma Y, Zhang P, Wang F, Zhang H, Yang Y, Shi C, et al. Elevated oncofoetal miR-17- 5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat Commun. 2012;3:1291.

    Article  PubMed  CAS  Google Scholar 

  131. Xu XM, Qian JC, Deng ZL, Cai Z, Tang T, Wang P, et al. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett. 2012;4:339–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gaedcke J, Grade M, Camps J, Søkilde R, Kaczkowski B, Schetter AJ, et al. The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18:4919–30.

    Article  CAS  PubMed  Google Scholar 

  133. Takahashi M, Cuatrecasas M, Balaguer F, Hur K, Toiyama Y, Castells A, et al. The clinical significance of MiR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS One. 2012;7:e46684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kalimutho M, Di Cecilia S, Del Vecchio BG, Roviello F, Sileri P, Cretella M, et al. Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer. 2011;104:1770–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, et al. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ. 2011;18(11):1702–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li S, Gao J, Gu J, Yuan J, Hua D, Shen L. MicroRNA-215 inhibits relapse of colorectal cancer patients following radical surgery. Med Oncol. 2013;30:549.

    Article  PubMed  CAS  Google Scholar 

  137. Chiang Y, Song Y, Wang Z, Liu Z, Gao P, Liang J, et al. microRNA-192, −194 and −215 are frequently downregulated in colorectal cancer. Exp Ther Med. 2012;3:560–6.

    CAS  PubMed  Google Scholar 

  138. Karaayvaz M, Pal T, Song B, Zhang C, Georgakopoulos P, Mehmood S, et al. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer. 2011;10(4):340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A. 2008;105(13):5166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aqeilan RI, Calin GA, Croce CM. MiR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  141. Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, et al. MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol. 2013;43(4):1212–8.

    CAS  PubMed  Google Scholar 

  142. Huang YH, Lin KH, Chen HC, Chang ML, Hsu CW, Lai MW, et al. Identification of postoperative prognostic microRNA predictors in hepatocellular carcinoma. PLoS One. 2012;7(5):e37188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 2011;30:4231–42.

    Article  CAS  PubMed  Google Scholar 

  144. Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer. 2011;10:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ma Q, Wang XF, Li ZF, Li BF, Ma FF, Peng LF, et al. microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep. 2013;29(4):1652–8.

    CAS  PubMed  Google Scholar 

  146. Qian J, Jiang BF, Li MF, Chen JF, Fang M. Prognostic significance of microRNA-16 expression in human colorectal cancer. World J Surg. 2013;12:2944–9.

    Article  Google Scholar 

  147. Weissmann-Brenner A, Kushnir M, Yanai GL, Aharonov R, Gibori H, Purim O, et al. Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int J Oncol. 2012;40:2097–103.

    CAS  PubMed  Google Scholar 

  148. Huang ZH, Huang D, Ni SJA, Peng ZL, Sheng WQ, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26.

    Article  CAS  PubMed  Google Scholar 

  149. Ragusa M, Majorana AF, Statello LF, Maugeri MF, Salito LF, Barbagallo DF, et al. Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther. 2010;9:3396–409.

    Article  CAS  PubMed  Google Scholar 

  150. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  CAS  PubMed  Google Scholar 

  151. Ruzzo A, Graziano FF, Vincenzi BF, Canestrari EF, Perrone GF, Galluccio NF, et al. High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory metastatic disease. Oncologist. 2012;17:823–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, et al. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis. 2012;33:1522–30.

    Article  CAS  PubMed  Google Scholar 

  153. Mekenkamp LJ, Tol J, Dijkstra JR, de Krijger I, Vink-Borger E, Teerenstra S, et al. Beyond KRAS mutation status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in metastatic colorectal cancer patients. BMC Cancer. 2012;12:292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shibutani M, Noda E, Maeda K, Nagahara H, Ohtani H, Hirakawa K. Low expression of claudin-1 and presence of poorly-differentiated tumor clusters correlate with poor prognosis in colorectal cancer. Anticancer Res. 2013;33:3301–6.

    PubMed  Google Scholar 

  155. Pu J, Bai D, Yang X, Lu X, Xu L, Lu J. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochem Biophys Res Commun. 2012;428:210–5.

    Article  CAS  PubMed  Google Scholar 

  156. Wang M, Zhang P, Li Y, Liu G, Zhou B, Zhan L, et al. The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Med Oncol. 2012;29:3113–8.

    Article  CAS  PubMed  Google Scholar 

  157. Gezer U, Özgür E, Cetinkaya M, Isin M, Dalay N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 2014;38(9):1076–9. doi:10.1002/cbin.10301.

    CAS  PubMed  Google Scholar 

  158. Takahashi Y, Sawada G, Kurashige J, Uchi R, Matsumura T, Ueo H, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer. 2014;110(1):164–71. doi:10.1038/bjc.2013.698.

    Article  CAS  PubMed  Google Scholar 

  159. Deng Q, He B, Gao T, Pan Y, Sun H, Xu Y, et al. Up-regulation of 91H promotes tumor metastasis and predicts poor prognosis for patients with colorectal cancer. PLoS One. 2014;9(7):e103022. doi:10.1371/journal.pone.0103022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Zheng HT, Shi DB, Wang YW, Li XX, Xu Y, Tripathi P, et al. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int J Clin Exp Pathol. 2014;7(6):3174–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6. doi:10.1158/0008-5472.CAN-11-1021.

    Article  CAS  PubMed  Google Scholar 

  162. Svoboda M, Slyskova J, Schneiderova M, Makovicky P, Bielik L, Levy M, et al. HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients. Carcinogenesis. 2014;35(7):1510–5. doi:10.1093/carcin/bgu055.

    Article  CAS  PubMed  Google Scholar 

  163. Ge X, Chen Y, Liao X, Liu D, Li F, Ruan H, et al. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol. 2013;30(2):588. doi:10.1007/s12032-013-0588-6.

    Article  PubMed  CAS  Google Scholar 

  164. Li Y, Li Y, Chen W, He F, Tan Z, Zheng J, et al. NEAT expression is associated with tumor recurrence and unfavorable prognosis in colorectal cancer. Oncotarget. 2015 Aug 7.

    Google Scholar 

  165. Qi P, Xu MD, Ni SJ, Shen XH, Wei P, Huang D, et al. Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Mol Carcinog. 2015;54(9):742–50. doi:10.1002/mc.22137.

    Article  CAS  PubMed  Google Scholar 

  166. Qi P, Xu MD, Ni SJ, Huang D, Wei P, Tan C, et al. Low expression of LOC285194 is associated with poor prognosis in colorectal cancer. J Transl Med. 2013;11:122. doi:10.1186/1479-5876-11-122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yin D, He X, Zhang E, Kong R, De W, Zhang Z. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med Oncol. 2014;31(11):253. doi:10.1007/s12032-014-0253-8.

    Article  PubMed  CAS  Google Scholar 

  168. Yin DD, Liu ZJ, Zhang E, Kong R, Zhang ZH, Guo RH. Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Tumour Biol. 2015;36(6):4851–9. doi:10.1007/s13277-015-3139-2.

    Article  CAS  PubMed  Google Scholar 

  169. Hu Y, Chen HY, Yu CY, Xu J, Wang JL, Qian J, et al. A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget. 2014;5(8):2230–42.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhu L, Liu J, Ma S, Zhang S. Long noncoding RNA MALAT-1 can predict metastasis and a poor prognosis: a meta-analysis. Pathol Oncol Res. 2015;21(4):1259–64. doi:10.1007/s12253-015-9960-5.

    Article  CAS  PubMed  Google Scholar 

  171. Cai B, Wu Z, Liao K, Zhang S. Long noncoding RNA HOTAIR can serve as a common molecular marker for lymph node metastasis: a meta-analysis. Tumour Biol. 2014;35(9):8445–50. doi:10.1007/s13277-014-2311-4.

    Article  CAS  PubMed  Google Scholar 

  172. Lee H, Kim C, Ku JL, Kim W, Yoon SK, Kuh HJ, et al. A long non-coding RNA snaR contributes to 5-fluorouracil resistance in human colon cancer cells. Mol Cells. 2014;37(7):540–6. doi:10.14348/molcells.2014.0151.

    Google Scholar 

  173. Xiong W, Jiang YX, Ai YQ, Liu S, Wu XR, Cui JG, et al. Microarray analysis of long non-coding RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Asian Pac J Cancer Prev. 2015;16(8):3395–402.

    Article  PubMed  Google Scholar 

  174. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61. doi:10.1101/gr.152942.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha O. Perakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perakis, S.O., Thomas, J.E., Pichler, M. (2016). Non-coding RNAs Enabling Prognostic Stratification and Prediction of Therapeutic Response in Colorectal Cancer Patients. In: Slaby, O., Calin, G. (eds) Non-coding RNAs in Colorectal Cancer. Advances in Experimental Medicine and Biology, vol 937. Springer, Cham. https://doi.org/10.1007/978-3-319-42059-2_10

Download citation

Publish with us

Policies and ethics