Skip to main content

On Methods of Terminal Control with Boundary-Value Problems: Lagrange Approach

  • Chapter
  • First Online:
Optimization and Its Applications in Control and Data Sciences

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 115))

Abstract

A dynamic model of terminal control with boundary value problems in the form of convex programming is considered. The solutions to these finite-dimensional problems define implicitly initial and terminal conditions at the ends of time interval at which the controlled dynamics develops. The model describes a real situation when an object needs to be transferred from one state to another. Based on the Lagrange formalism, the model is considered as a saddle-point controlled dynamical problem formulated in a Hilbert space. Iterative saddle-point method has been proposed for solving it. We prove the convergence of the method to saddle-point solution in all its components: weak convergence—in controls, strong convergence—in phase and conjugate trajectories, and terminal variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Scalar products and norms are defined, respectively, as

    $$\displaystyle\begin{array}{rcl} & \langle x(\cdot ),y(\cdot )\rangle =\int _{ t_{0}}^{t_{1}}\langle x(t),y(t)\rangle dt,\;\|x(\cdot )\|^{2} =\int _{ t_{ 0}}^{t_{1}}\vert x(t)\vert ^{2}dt, & {}\\ & \text{where }\;\langle x(t),y(t)\rangle =\sum \limits _{ 1}^{n}x_{i}(t)y_{i}(t),\;\vert x(t)\vert ^{2} =\sum \limits _{ 1}^{n}x_{i}^{2}(t),\quad t_{0} \leq t \leq t_{1},& {}\\ & x(t) = (x_{1}(t),\ldots,x_{n}(t))^{\mathrm{T}},\;y(t) = (y_{1}(t),\ldots,y_{n}(t))^{\mathrm{T}}. & {}\\ \end{array}$$
  2. 2.

    For simplicity, the positive orthant R+ m hereinafter will also be referred to p ≥ 0.

  3. 3.

    See below the proof of the theorem.

References

  1. Antipin, A.S.: On method to find the saddle point of the modified Lagrangian. Ekonomika i Matem. Metody 13 (3), 560–565 (1977) [in Russian]

    MathSciNet  Google Scholar 

  2. Antipin, A.S.: Equilibrium programming: proximal methods. Comp. Maths. Math. Phys. 37 (11), 1285–1296 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Antipin, A.S.: Saddle-point problem and optimization problem as one system. Trudy Instituta Matematiki i Mekhaniki UrO RAN 14 (2), 5–15 (2008) [in Russian]

    MathSciNet  Google Scholar 

  4. Antipin, A.S.: Equilibrium programming: models and methods for solving. Izvestiya IGU. Matematika. 2 (1), 8–36 (2009) [in Russian], http://isu.ru/izvestia

    Google Scholar 

  5. Antipin, A.S.: Two-person game wish Nash equilibrium in optimal control problems. Optim. Lett. 6 (7), 1349–1378 (2012). doi:10.1007/s11590-011-0440-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Antipin, A.S.: Terminal control of boundary models. Comp. Maths. Math. Phys. 54 (2), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antipin, A.S., Khoroshilova, E.V.: Linear programming and dynamics. Trudy Instituta Matematiki i Mekhaniki UrO RAN 19 (2), 7–25 (2013) [in Russian]

    MathSciNet  Google Scholar 

  8. Antipin, A.S., Khoroshilova, E.V.: On boundary-value problem for terminal control with quadratic criterion of quality. Izvestiya IGU. Matematika 8, 7–28 (2014) [in Russian]. http://isu.ru/izvestia

    MATH  Google Scholar 

  9. Antipin, A.S., Khoroshilova, E.V.: Multicriteria boundary value problem in dynamics. Trudy Instituta Matematiki i Mekhaniki UrO RAN 21 (3), 20–29 (2015) [in Russian]

    MathSciNet  Google Scholar 

  10. Antipin, A.S., Khoroshilova, E.V.: Optimal control with connected initial and terminal conditions. Proc. Steklov Inst. Math. 289 (1), Suppl. 9–25 (2015)

    Google Scholar 

  11. Antipin, A.S., Vasilieva, O.O.: Dynamic method of multipliers in terminal control. Comput. Math. Math. Phys. 55 (5), 766–787 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Antipin, A.S., Vasiliev, F.P., Artemieva, L.A.: Regularization method for searching for an equilibrium point in two-person saddle-point games with approximate input data. Dokl. Math. 1, 49–53 (2014). Pleiades Publishing

    Google Scholar 

  13. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its Applications, vol. 17. Springer, New York (2008)

    Google Scholar 

  14. Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (eds.): Optimization and Optimal Control, Theory and Applications, vol. 39. Springer, New York (2010)

    Google Scholar 

  15. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. 1. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Hager, W.W., Pardalos, P.M. Optimal Control: Theory, Algorithms and Applications. Kluwer Academic, Boston (1998)

    Book  Google Scholar 

  17. Khoroshilova, E.V.: Extragradient method of optimal control with terminal constraints. Autom. Remote. Control 73 (3), 517–531 (2012). doi:10.1134/S0005117912030101

    Article  MathSciNet  MATH  Google Scholar 

  18. Khoroshilova, E.V.: Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim. Lett. 7 (6), 1193–1214 (2013). doi:10.1007/s11590-012-0496-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis, 7th edn. FIZMATLIT, Moscow (2009)

    MATH  Google Scholar 

  20. Konnov, I.V.: Nonlinear Optimization and Variational Inequalities. Kazan University, Kazan (2013) [in Russian]

    Google Scholar 

  21. Korpelevich, G.M.: Extragradient method for finding saddle points and other applications. Ekonomika i Matem. Metody 12 (6), 747–756 (1976) [in Russian]

    MATH  Google Scholar 

  22. Krishchenko, A.P., Chetverikov, V.N.: The covering method for the solution of terminal control problems. Dokl. Math. 92 (2), 646–650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mcintyre, J.E. Neighboring optimal terminal control with discontinuous forcing functions. AIAA J. 4 (1), 141–148 (1966). doi:10.2514/3.3397

    Article  MathSciNet  Google Scholar 

  24. Polyak, B.T., Khlebnikov, M.B., Shcherbakov, P.S.: Control by Liner Systems Under External Perturbations. LENAND, Moscow (2014)

    MATH  Google Scholar 

  25. Stewart, D.E.: Dynamics with inequalities. In: Impacts and Hard Constraints. SIAM, Philadelphia (2013)

    Google Scholar 

  26. Vasiliev, F.P.: Optimization Methods: In 2 books. MCCME, Moscow (2011) [in Russian]

    Google Scholar 

  27. Vasiliev, F.P., Khoroshilova, E.V., Antipin, A.S.: Regularized extragradient method of searching a saddle point in optimal control problem. Proc. Steklov Inst. Math. 275 (Suppl. 1), 186–196 (2011) DOI: 10.1134/S0081543811090148

    Article  Google Scholar 

Download references

Acknowledgements

The work was carried out with financial support from RFBR (project No. 15-01-06045-a), and the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (agreement Ń02.A03.21.0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Antipin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antipin, A., Khoroshilova, E. (2016). On Methods of Terminal Control with Boundary-Value Problems: Lagrange Approach. In: Goldengorin, B. (eds) Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-42056-1_2

Download citation

Publish with us

Policies and ethics