Skip to main content

Image Analysis of the Tumor Microenvironment

  • Chapter
  • First Online:
Book cover Systems Biology of Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 936))

Abstract

In the field of pathology it is clear that molecular genomics and digital imaging represent two promising future directions, and both are as relevant to the tumor microenvironment as they are to the tumor itself (Beck AH et al. Sci Transl Med 3(108):108ra113–08ra113, 2011). Digital imaging, or whole slide imaging (WSI), of glass histology slides facilitates a number of value-added competencies which were not previously possible with the traditional analog review of these slides under a microscope by a pathologist. As an important tool for investigational research, digital pathology can leverage the quantification and reproducibility offered by image analysis to add value to the pathology field. This chapter will focus on the application of image analysis to investigate the tumor microenvironment and how quantitative investigation can provide deeper insight into our understanding of the tumor to tumor microenvironment relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amat-Roldan I et al (2010) Fast image analysis in polarization SHG microscopy. Opt Express 18(16):17209–17219

    Article  PubMed  Google Scholar 

  2. Anderson A, Chaplain M, Rejniak K (eds) (2007) Single-cell-based models in biology and medicine. Birkhauser-Verlag, Mathematics and Bioscisnce in Interaction (MBI) series

    Google Scholar 

  3. Anitei M-G et al (2014) Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin Cancer Res 20(7):1891–1899

    Article  PubMed  Google Scholar 

  4. Beck AH et al (2011) Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med 3(108):108ra113–108ra113

    Article  PubMed  Google Scholar 

  5. Ben-Baruch A (2002) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression-reciprocal tumor–microenvironment interactions. Breast Cancer Res 5(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bradford JA et al (2004) Fluorescence intensity multiplexing: simultaneous seven marker, two color immunophenotyping using flow cytometry. Cytometry Part A 61(2):142–152

    Article  Google Scholar 

  7. Chien M-P et al (2013) Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. J Am Chem Soc 135(50):18710–18713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deepak RU et al (2015) Computer assisted pap smear analyser for cervical cancer screening using quantitative microscopy. J Cytol Histol S3:010. doi:10.4172/2157-7099.S3-010

  9. Dvorak HF et al (2011) Tumor microenvironment and progression. J Surg Oncol 103(6):468–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Egeblad M et al (2008) Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Model Mech 1(2–3):155–167

    Article  PubMed  PubMed Central  Google Scholar 

  11. Estrella V et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73(5):1524–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Faratian D et al (2011) Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence. J Vis Exp 56:e3334

    Google Scholar 

  13. Glatz K, Pritt B, Glatz D, Hartmann A, O’Brien MJ, Blaszyk H (2007) A multinational, internet-based assessment of observer variability in the diagnosis of serrated colorectal polyps. Am J Clin Pathol 127(6):938–945

    Article  PubMed  Google Scholar 

  14. Gurcan MN et al (2009) Histopathological image analysis: a review. IEEE Rev Biomed Eng 2:147–171

    Article  PubMed  PubMed Central  Google Scholar 

  15. Helm J, Centeno BA, Coppola D et al (2009) Histologic characteristics enhance predictive value of American Joint Committee on Cancer staging in resectable pancreas cancer. Cancer 115(18):4080–4089

    Article  PubMed  Google Scholar 

  16. Iyengar P et al (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Investig 115(5):1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  18. Kayser K et al (2010) AI (artificial intelligence) in histopathology–from image analysis to automated diagnosis. Folia Histochem Cytobiol 47(3):355–354

    Article  Google Scholar 

  19. Karabulut A, Jesper R, Marianne Hamilton T, Finn P, Nielsen HW, Erik D (1995) Observer variability in the histologic assessment of oral premalignant lesions. J Oral Pathol Med 24(5):198–200

    Article  CAS  PubMed  Google Scholar 

  20. Kenny PA, Lee GY, Bissell MJ (2007) Targeting the tumor microenvironment. Front Biosci 12:3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levenson RM, Cronin PJ, Pankratov KK (2003) Spectral imaging for brightfield microscopy. Biomedical Optics 2003. International Society for Optics and Photonics

    Google Scholar 

  22. Li H, Fan X, Houghton JM (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101(4):805–815

    Article  CAS  PubMed  Google Scholar 

  23. Lloyd MC et al (2010) Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: how reliable is it? J Pathol Inform 1:29

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lloyd MC, Alfarouk KO, Verduzco D, Bui MM, Gillies RJ, Ibrahim ME, Brown JS, Gatenby RA (2014) Vascular measurements correlate with estrogen receptor status. BMC Cancer 14(1):279

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lloyd MC, Rejniak KA, Brown JS, Gatenby RA, Minor ES, Bui MM (2015) Pathology to enhance precision medicine in oncology: lessons from landscape ecology. Adv Anat Pathol 22(4):267–272

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mass RD et al (2005) Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer 6(3):240–246

    Article  PubMed  Google Scholar 

  27. Mavaddat N et al (2010) Incorporating tumour pathology information into breast cancer risk prediction algorithms. Breast Cancer Res 12(3):R28

    Google Scholar 

  28. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108

    Article  CAS  PubMed  Google Scholar 

  29. Messina JL et al (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nyberg P, Salo T, Kalluri R (2007) Tumor microenvironment and angiogenesis. Front Biosci: A J Virtual Libr 13:6537–6553

    Google Scholar 

  31. Ohashi A et al (2005) Quantitative analysis of the microvascular architecture observed on magnification endoscopy in cancerous and benign gastric lesions. Endoscopy 37(12):1215–1219

    Article  CAS  PubMed  Google Scholar 

  32. Oka M (1990) Second harmonic generation. U.S. Patent No. 4,910,740. 20 Mar

    Google Scholar 

  33. Peng C-W et al (2011) Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials 32(11):2907–2917

    Article  CAS  PubMed  Google Scholar 

  34. Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26(4):357–370

    Article  CAS  PubMed  Google Scholar 

  35. Rejniak KA (2012) Homeostatic imbalance in epithelial ducts and its role in carcinogenesis. Scientifica 132978

    Google Scholar 

  36. Robertson AJ, Anderson JM, Swanson Beck J, Burnett RA, Howatson SR, Lee FD, Lessells AM, McLaren KM, Moss SM, Simpson JG (1989) Observer variability in histopathological reporting of cervical biopsy specimens. J Clin Pathol 42(3):231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rojo MG, Bueno G, Slodkowska J (2010) Review of imaging solutions for integrated quantitative immunohistochemistry in the Pathology daily practice. Folia Histochem Cytobiol 47(3):349–348

    Article  Google Scholar 

  38. Sarode VR et al (2011) A comparative analysis of biomarker expression and molecular subtypes of pure ductal carcinoma in situ and invasive breast carcinoma by image analysis: relationship of the subtypes with histologic grade, Ki67, p53 overexpression, and DNA ploidy. Int J Breast Cancer 217060

    Google Scholar 

  39. Schindewolf T et al (1994) Evaluation of different image acquisition techniques for a computer vision system in the diagnosis of malignant melanoma. J Am Acad Dermatol 31(1):33–41

    Article  CAS  PubMed  Google Scholar 

  40. Serra J (1982) Image analysis and mathematical morphology, vol 1. Academic, New York

    Google Scholar 

  41. Song N, Tao LI, Xue-Min Z (2014) Immune cells in tumor microenvironment. Prog Biochem Biophys 41(10):1075–1084

    CAS  Google Scholar 

  42. Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646

    Article  CAS  PubMed  Google Scholar 

  43. Uchugonova A et al (2013) Multiphoton tomography visualizes collagen fibers in the tumor microenvironment that maintain cancer cell anchorage and shape. J Cell Biochem 114(1):99–102

    Article  CAS  PubMed  Google Scholar 

  44. Wetzels RH et al (1989) Detection of basement membrane components and basal cell keratin 14 in noninvasive and invasive carcinomas of the breast. Am J Pathol 134(3):571

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Lloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lloyd, M.C., Johnson, J.O., Kasprzak, A., Bui, M.M. (2016). Image Analysis of the Tumor Microenvironment. In: Rejniak, K. (eds) Systems Biology of Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-42023-3_1

Download citation

Publish with us

Policies and ethics