Skip to main content

Automated Segmentation of CBCT Image with Prior-Guided Sequential Random Forest

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9601))

Included in the following conference series:

Abstract

A major limitation of CBCT scans is the widespread image artifacts such as noise, beam hardening and inhomogeneity, causing great difficulty for accurate segmentation of bony structures from soft tissues, as well as separation of mandible from maxilla. In this paper, we present a novel fully automated method for CBCT image segmentation. Specifically, we first employ majority voting to estimate the initial probability maps of mandible and maxilla. We then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of classifier. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of classifier. By iteratively training the subsequent classifier and the updated segmentation probability maps, we can derive a sequence of classifiers. Experimental results on 30 CBCTs show that the proposed method achieves the state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, L., Ren, Y., Gao, Y., Tang, Z., Chen, K.C., Li, J., Shen, S.G., Yan, J., Lee, P.K., Chow, B., Xia, J.J., Shen, D.: Estimating patient-specific and anatomically correct reference model for craniomaxillofacial deformity via sparse representation. Med. Phys. 42, 5809 (2015)

    Article  Google Scholar 

  2. Wang, L., Chen, K.C., Gao, Y., Shi, F., Liao, S., Li, G., Shen, S.G.F., Yan, J., Lee, P.K.M., Chow, B., Liu, N.X., Xia, J.J., Shen, D.: Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med. Phys. 41, 043503 (2014)

    Article  Google Scholar 

  3. Le, B.H., Deng, Z., Xia, J., Chang, Y.-B., Zhou, X.: An interactive geometric technique for upper and lower teeth segmentation. In: Yang, G.-Z., et al. (eds.) MICCAI 2009, vol. 5762, pp. 968–975. Springer, Berlin Heidelberg (2009)

    Google Scholar 

  4. Hassan, B.A.: Applications of Cone Beam Computed Tomography in Orthodontics and Endodontics. Thesis, Reading University, VU University Amsterdam (2010)

    Google Scholar 

  5. He, L., Zheng, S.F., Wang, L.: Integrating local distribution information with level set for boundary extraction. J. Vis. Commun. Image Represent. 21, 343–354 (2010)

    Article  Google Scholar 

  6. Kainmueller, D., Lamecker, H., Seim, H., Zinser, M., Zachow, S.: Automatic extraction of mandibular nerve and bone from cone-beam CT data. In: Yang, G.-Z., et al. (eds.) MICCAI 2009, vol. 5762, pp. 76–83. Springer, Heidelberg (2009)

    Google Scholar 

  7. Gollmer, S.T., Buzug, T.M.: Fully automatic shape constrained mandible segmentation from cone-beam CT data. In: ISBI, pp. 1272–1275 (2012)

    Google Scholar 

  8. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Deformable segmentation via sparse shape representation. In: Fichtinger, G., et al. (eds.) MICCAI 2011, vol. 6892, pp. 451–458. Springer, Heidelberg (2011)

    Google Scholar 

  9. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. Med. Image Anal. 16, 265–277 (2012)

    Article  Google Scholar 

  10. Zhang, S.T., Zhan, Y.Q., Metaxas, D.N.: Deformable segmentation via sparse representation and dictionary learning. Med. Image Anal. 16, 1385–1396 (2012)

    Article  Google Scholar 

  11. Wang, L., Shi, F., Gao, Y., Li, G., Gilmore, J.H., Lin, W., Shen, D.: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. NeuroImage 89, 152–164 (2014)

    Article  Google Scholar 

  12. Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J.H., Shen, D.: Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84, 141–158 (2014)

    Article  Google Scholar 

  13. Shi, F., Wang, L., Wu, G.R., Li, G., Gilmore, J.H., Lin, W.L., Shen, D.: Neonatal atlas construction using sparse representation. Hum. Brain Mapp. 35, 4663–4677 (2014)

    Article  Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  15. Zikic, D., Glocker, B., Criminisi, A.: Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med. Image Anal. 18, 1262–1273 (2014)

    Article  Google Scholar 

  16. Wang, L., Gao, Y., Shi, F., Li, G., Gilmore, J.H., Lin, W., Shen, D.: LINKS: learning-based multi-source integration framework for segmentation of infant brain images. NeuroImage 108, 160–172 (2015)

    Article  Google Scholar 

  17. Zikic, D., Glocker, B., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., et al. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1744–1757 (2010)

    Article  Google Scholar 

  19. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Article  Google Scholar 

  20. Sutton, C., McCallum, A., Rohanimanesh, K.: Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. J. Mach. Learn. Res. 8, 693–723 (2007)

    MATH  Google Scholar 

  21. Oliva, A., Torralba, A.: The role of context in object recognition. Trends Cogn. Sci. 11, 520–527 (2007)

    Article  Google Scholar 

  22. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  23. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  24. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)

    Article  Google Scholar 

  25. Zikic, D., Glocker, B., Criminisi, A.: Atlas encoding by randomized forests for efficient label propagation. In: Mori, K., et al. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, vol. 8151, pp. 66–73. Springer, Berlin Heidelberg (2013)

    Chapter  Google Scholar 

  26. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, L. et al. (2016). Automated Segmentation of CBCT Image with Prior-Guided Sequential Random Forest. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42016-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42015-8

  • Online ISBN: 978-3-319-42016-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics