Skip to main content

Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9601))

Included in the following conference series:

Abstract

Most medical images feature a high similarity in the intensities of nearby pixels and a strong correlation of intensity profiles across different image modalities. One way of dealing with – and even exploiting – this correlation is the use of local image patches. In the same way, there is a high correlation between nearby labels in image annotation, a feature that has been used in the “local structure prediction” of local label patches. In the present study we test this local structure prediction approach for 3D segmentation tasks, systematically evaluating different parameters that are relevant for the dense annotation of anatomical structures. We choose convolutional neural network as learning algorithm, as it is known to be suited for dealing with correlation between features. We evaluate our approach on the public BRATS2014 data set with three multimodal segmentation tasks, being able to obtain state-of-the-art results for this brain tumor segmentation data set consisting of 254 multimodal volumes with computing time of only 13 s per volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akselrod-Ballin, A., et al.: An integrated segmentation and classification approach applied to multiple sclerosis analysis. In: Computer Vision and Pattern Recognition (CVPR) (2006)

    Google Scholar 

  2. Chen, L.C., et al.: Learning a dictionary of shape epitomes with applications to image labeling. In: International Conference on Computer Vision (ICCV), pp. 337–344 (2013)

    Google Scholar 

  3. Dollar, P., Zittnick, C.L.: Structured forests for fast edge detection. In: International Conference on Computer Vision (ICCV), pp. 1841–1848 (2013)

    Google Scholar 

  4. Geremia, E., Menze, B.H., Ayache, N.: Spatially adaptive random forests. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1332–1335 (2013)

    Google Scholar 

  5. Iglesias, J.E., Konukoglu, E., Zikic, D., Glocker, B., Van Leemput, K., Fischl, B.: Is synthesizing MRI contrast useful for inter-modality analysis? In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 631–638. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Kontschieder, P., Rota Bulo, S., Bischof, H., Pelillo, M.: Structured class-labels in random forests for semantic image labelling. In: International Conference on Computer Vision (ICCV), pp. 2190–2197 (2011)

    Google Scholar 

  7. Liao, S., Gao, Y., Oto, A., Shen, D.: Representation learning: a unified deep learning framework for automatic prostate MR segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 254–261. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Menze, B., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging (TMI) 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  10. Pinheiro, P.H.O., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: International Conference on Machine Learning (ICML), pp. 82–90 (2014)

    Google Scholar 

  11. Pohl, K.M., et al.: A hierarchical algorithm for MR brain image parcellation. IEEE Trans. Med. Imaging (TMI) 26(9), 1201–1212 (2007)

    Article  MathSciNet  Google Scholar 

  12. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275–283 (2004)

    Article  Google Scholar 

  14. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014)

    Google Scholar 

  15. Tong, T., et al.: Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling. NeuroImage 76, 11–23 (2013)

    Article  Google Scholar 

  16. Tustison, N., et al.: N4ITK: improved N3 bias correction with robust B-spline approximation. In: IEEE International Symposium on Biomedical Imaging (ISBI) (2010)

    Google Scholar 

  17. Urban, G., et al.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI-BRATS, pp. 31–35 (2014)

    Google Scholar 

  18. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging (TMI) 20(1), 45–57 (2001)

    Article  Google Scholar 

  19. Zhu, L., et al.: Recursive segmentation and recognition templates for 2D parsing. In: Neural Information Processing Systems (NIPS), pp. 1985–1992 (2009)

    Google Scholar 

  20. Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgments

PD acknowledges projects SIX CZ.1.05/2.1.00/03.0072, EU ECOP EE.2.3.20.0094, GACR 102/12/1104, and CZ.1.05/2.1.00/01.0017 (ED0017/01/01), Czech Republic. BM acknowledges support through the Technische Universität München-Institute for Advanced Study (funded by the German Excellence Initiative and the European Union Seventh Framework Programme under Grant agreement 291763), and the Marie Curie COFUND program of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Dvořák or Bjoern Menze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dvořák, P., Menze, B. (2016). Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42016-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42015-8

  • Online ISBN: 978-3-319-42016-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics