Skip to main content

Structure Specific Atlas Generation and Its Application to Pancreas Segmentation from Contrasted Abdominal CT Volumes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9601))

Abstract

Patient-specific atlas is a key technology for the recognition of the human anatomy from 3D medical images. Automated recognition of the pancreas is one main issue for computer-assisted diagnosis and therapy systems in the abdomen because many diseases of the pancreas are not accompanied by noticeable symptoms. In patient-specific atlas generation, hierarchical and mosaicing methods have been proposed to cope with individual differences in the position, orientation, and shape of the pancreas. Even though segmentation accuracy was improved by these methods, it remains lower than for other abdominal organs, such as the liver and the kidneys. The location of the pancreas strongly correlates with the location of vasculature systems, especially the splenic vein. In this paper, we propose a new structure specific atlas generation method that considers the structural information in atlas generation. As for the structural information, we enhance the vasculature using a vesselness filter. Similar volumes in a training dataset with respect to the vasculature structure are selected and used for atlas generation. Using 150 cases of contrast-enhanced 3D abdominal CT volumes, our experiment improved the mis-segmentation of the surrounding organs or such soft tissues as the duodenum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shimizu, A., Kimoto, T., Kobatake, H., Nawano, S., Shinozaki, K.: Automated pancreas segmentation from three dimensional contrast enhanced computed tomography. Int. J. Comput. Assist. Radiol. Surg. 5, 85–98 (2010)

    Article  Google Scholar 

  2. Wolz, R., Chu, C., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans. Med. Imaging 32(9), 1723–1730 (2013)

    Article  Google Scholar 

  3. Chu, C., Oda, M., Kitasaka, T., Misawa, K., Fujiwara, M., Hayashi, Y., Nimura, Y., Rueckert, D., Mori, K.: Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 165–172. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Okada, T., Linguraru, M.G., Hori, M., Summers, R.M., Tomiyama, N., Sato, Y.: Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 275–282. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Hammon, M., Cavallaro, A., Erdt, M., Dankerl, P., Kirschner, M., Drechsler, K., Wesarg, S., Uder, M., Janka, R.: Model-based pancreas segmentation in portal venous phase contrast-enhanced CT images. J. Digital Imaging 26(6), 1082–1090 (2013)

    Article  Google Scholar 

  6. Wang, Z., Bhatia, K.K., Glocker, B., Marvao, A., Dawes, T., Misawa, K., Mori, K., Rueckert, D.: Geodesic patch-based segmentation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 666–673. Springer, Heidelberg (2014)

    Google Scholar 

  7. Karasawa, K., Oda, M., Hayashi, Y., Nimura, Y., Kitasaka, T., Misawa, K., Fujiwara, M., Rueckert, D., Mori, K.: Pancreas segmentation from 3D abdominal CT images using patient-specific weighted-subspatial probabilistic atlases. In: Proceeding of Society of Photographic Engineers 9413, Medical Imaging (2015)

    Google Scholar 

  8. Roth, H.R., Farag, A., Lu, L., Turkbey, E.B., Summers, R.M.: Deep convolutional networks for pancreas segmentation in CT imaging. In: Proceeding of Society of Photographic Engineers 9413, Medical Imaging (2015)

    Google Scholar 

  9. Karasawa, K., Oda, M., Hayashi, Y., Nimura, Y., Kitasaka, T., Misawa, K., Fujiwara, M., Mori, K.: Pancreas segmentation from abdominal CT volumetric images using hierarchically-weighted probabilistic atlases. In: Joint Conference of the International Workshop on Advanced Image Technology and the International Forum on Medical Imaging in Asia, PS.1, 617 (2015)

    Google Scholar 

  10. Tong, T., Wolz, R., Wang, Z., Gao, Q., Misawa, K., Fujiwara, M., Mori, K., Hajnal, J.V., Rueckert, D.: Discriminative dictionary learning for abdominal multi-organ segmentation. Med. Image Anal. 23(1), 92–104 (2015)

    Article  Google Scholar 

  11. Farag, A., Liu, J., Summers, R.M.: Automatic segmentation of abdominal vessels for improved pancreas localization. In: Proceeding of Society of Photographic Engineers 9037, Medical Imaging (2014)

    Google Scholar 

  12. Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.: Model-based quantitation of 3-D magnetic resonance Angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)

    Article  Google Scholar 

  13. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1997)

    Article  Google Scholar 

  14. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12, 731–741 (2008)

    Article  Google Scholar 

  15. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichi Karasawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Karasawa, K. et al. (2016). Structure Specific Atlas Generation and Its Application to Pancreas Segmentation from Contrasted Abdominal CT Volumes. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42016-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42015-8

  • Online ISBN: 978-3-319-42016-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics