Skip to main content

A Survey of Mathematical Structures for Extending 2D Neurogeometry to 3D Image Processing

  • Conference paper
  • First Online:
Book cover Medical Computer Vision: Algorithms for Big Data (MCV 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9601))

Included in the following conference series:

Abstract

In the Big Data landscape, learning algorithms are often “black-boxes” and as such, hard to interpret. We need new constructive models, to eventually feed the Big Data framework. The emerging field of Neurogeometry provides inspiration for models in medical computer vision. Neurogeometry models the neuronal architecture of the visual cortex through Differential Geometry. First, Neurogeometry can explain visual phenomena like human perceptual completion. And second, it provides efficient algorithms for computer vision. Examples of applications are image completion (in-painting) and crossing-preserving smoothing. In medical computer vision, Neurogeometry is less known. One reason is that one often deals with 3D images, whereas Neurogeometry is essentially 2D (our retina is 2D). Moreover, the generalization to 3D is not mathematically straight-forward. This article presents the theoretical framework of a 3D-Neurogeometry inspired by the 2D case. The aim is to provide a “theoretical toolbox” and inspiration for new models in 3D medical computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.W.: The Riemannian geometry of orbit spaces: metric, geodesics, and integrable systems. Publicationes Mathematicae Debrecen 62(3-4), 1–30 (2003)

    Google Scholar 

  2. Bellaıche, A., Risler, J.J.: Sub-Riemannian Geometry. Progress in Mathematics, vol. 144. Birkhäuser (1996)

    Google Scholar 

  3. Boscain, U., Chertovskih, R.A., Gauthier, J.P., Remizov, A.O.: Hypoelliptic diffusion and human vision: a semidiscrete new twist. J. Imaging Sci. Soc. Ind. Appl. Math. 7(2), 669–695 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Boscain, U.V., Duplaix, J., Gauthier, J.P., Rossi, F.: Anthropomorphic image reconstruction via hypoelliptic diffusion. SIAM J. Control Optim. 50(3), 1309–1336 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Lie Groups and Lie Algebras: Chap. 1–3. Hermann, Elements of mathematics (1989)

    Google Scholar 

  6. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duits, R., Franken, E.: Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on se(2). Q. Appl. Math. 68, 255–292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duits, R., Franken, E.: Left-invariant parabolic evolutions on se(2) and contour enhancement via invertible orientation scores. Part II : non linear left invariant diffusion equations on invertible orientation scores. Q. Appl. Math. 68, 293–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hubel, D., Willmer, C., Rutter, J.: Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature 269, 22 (1977)

    Article  Google Scholar 

  11. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987)

    Google Scholar 

  12. Koenderink, J., van Doorn, A.: Representation of local geometry in the visual system. Biol. Cybern. 55(6), 367–375 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miolane, N., Pennec, X.: Computing bi-invariant pseudo-metrics on lie groups for consistent statistics. Entropy J. Multi. Digital Publishing Inst. 17(4), 1850–1881 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Petitot, J.: Neurogeometry of neural functional architectures. Chaos, Solitons Fractals 50, 75–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Postnikov, M.: Geometry VI: Riemannian Geometry. Encyclopaedia of Mathematical Sciences. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  16. Sanguinetti, G., Citti, G., Sarti, A.: Image completion using a diffusion driven mean curvature flowing a sub-Riemannian space. In: Proceedings of the International Conference on Computer Vision Theory and Applications, VISApp. 2008, Funchal, vol. 2, pp. 46–53 (2008)

    Google Scholar 

  17. Zefran, M., Kumar, V., Crocke, C.: On the generation of smooth tridimensional rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Miolane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Miolane, N., Pennec, X. (2016). A Survey of Mathematical Structures for Extending 2D Neurogeometry to 3D Image Processing. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42016-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42015-8

  • Online ISBN: 978-3-319-42016-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics