Skip to main content

\(MC^2\): An Integrated Toolbox for Change, Causality and Motif Discovery

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Abstract

Time series are being generated continuously from all kinds of human endeavors. The ubiquity of time-series data generates a need for data mining and pattern discovery algorithms targeting this data format which is becoming of ever increasing importance. Three basic problems in mining time-series data are change point discovery, causality discovery and motif discovery. This paper presents an integrated toolbox that can be used to perform any of these tasks on multidimensional real-valued time-series using state of the art algorithms. The proposed toolbox provides practitioners in time-series analysis and data mining with several tools useful for data generation, preprocessing, modeling evaluation and mining of long sequences. The paper also reports real world applications that uses the toolbox in HRI, physiological signal processing, and human behavior modeling and understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andre-Obrecht, R.: A new statistical approach for the automatic segmentation of continuous speech signals. IEEE Trans. Acoust. Speech Signal Process. 36(1), 29–40 (1988)

    Article  Google Scholar 

  2. Basseville, M., Kikiforov, I.: Detection of Abrupt Changes. Printice Hall, Englewood Cliffs (1993)

    Google Scholar 

  3. Calinon, S., Billard, A.: Incremental learning of gestures by imitation in a humanoid robot. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 255–262. ACM (2007)

    Google Scholar 

  4. Catalano, J., Armstrong, T., Oates, T.: Discovering patterns in real-valued time series. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 462–469. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: KDD 2003: The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–498. ACM, New York (2003)

    Google Scholar 

  6. Fearnhead, P., Liu, Z.: On-line inference for multiple changepoint problems. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 69(4), 589–605 (2007)

    Article  MathSciNet  Google Scholar 

  7. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica J. Econometric Soc. 37, 424–438 (1969)

    Article  Google Scholar 

  8. Hassani, H., Heravi, S., Zhigljavsky, A.: Forecasting European industrial production with singular spectrum analysis. Int. J. Forecast. 25(1), 103–118 (2009)

    Article  Google Scholar 

  9. Ide, T., Inoue, K.: Knowledge discovery from heterogeneous dynamic systems using change-point correlations. In: SDM 2005: SIAM International Conference on Data Mining, pp. 571–575 (2005)

    Google Scholar 

  10. Itoh, N., Kurths, J.: Change-point detection of climate time series by nonparametric method. In: Proceedings of the World Congress on Engineering and Computer Science, Citeseer, vol. 1, pp. 445–448 (2010)

    Google Scholar 

  11. Jensen, K.L., Styczynxki, M.P., Rigoutsos, I., Stephanopoulos, G.N.: A generic motif discovery algorithm for sequenctial data. Bioinformatics 22(1), 21–28 (2006)

    Article  Google Scholar 

  12. Kulic, D., Nakamura, Y.: Incremental learning and memory consolidation of whole body motion patterns. In: International Conference on Epigenetic Robotics, pp. 61–68 (2008)

    Google Scholar 

  13. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  14. Minnen, D., Starner, T., Essa, I.A., Isbell Jr., C.L.: Improving activity discovery with automatic neighborhood estimation. In: IJCAI 2007: 16th International Joint Conference on Artificial Intelligence, vol. 7, pp. 2814–2819 (2007)

    Google Scholar 

  15. Mohammad, Y., Nishida, T.: Learning interaction protocols using augmented Baysian networks applied to guided navigation. In: IROS 2010: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4119–4126. IEEE (2010)

    Google Scholar 

  16. Mohammad, Y., Ohmoto, Y., Nishida, T.: GSteX: greedy stem extension for free-length constrained motif discovery. In: IEA/AIE 2012: The International Conference on Industrial, Engineering, and Other Applications of Applied Intelligence, pp. 417–426 (2012)

    Google Scholar 

  17. Mohammad, Y., Nishida, T.: Constrained motif discovery in time series. New Gener. Comput. 27(4), 319–346 (2009)

    Article  MATH  Google Scholar 

  18. Mohammad, Y., Nishida, T.: Mining causal relationships in multidimensional time series. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge Management. SCI, vol. 260, pp. 309–338. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Mohammad, Y., Nishida, T.: Using physiological signals to detect natural interactive behavior. Appl. Intell. 33, 79–92 (2010)

    Article  Google Scholar 

  20. Mohammad, Y., Nishida, T.: On comparing SSA-based change point discovery algorithms. In: SII 2011: IEEE/SICE International Symposium on System Integration, pp. 938–945 (2011)

    Google Scholar 

  21. Mohammad, Y., Nishida, T.: Fluid imitation. Int. J. Soc. Robot. 4(4), 369–382 (2012)

    Article  Google Scholar 

  22. Mohammad, Y., Nishida, T.: Exact discovery of length-range motifs. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS, vol. 8398, pp. 23–32. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Mohammad, Y., Nishida, T.: Scale invariant multi-length motif discovery. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014, Part II. LNCS, vol. 8482, pp. 417–426. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Mohammad, Y., Nishida, T.: Data Mining for Social Robotics. Springer, Cham (2015)

    Book  Google Scholar 

  25. Mohammad, Y., Nishida, T.: Exact multi-length scale and mean invariant motif discovery. Appl. Intell. 44(2), 322–339 (2015)

    Article  Google Scholar 

  26. Mohammad, Y., Nishida, T.: Learning interaction protocols by mimicking: understanding and reproducing human interactive behavior. Pattern Recogn. Lett. 66(15), 62–70 (2015)

    Article  Google Scholar 

  27. Mohammad, Y., Nishida, T.: Shift density estimation based approximately recurring motif discovery. Appl. Intell. 42(1), 112–134 (2015)

    Article  Google Scholar 

  28. Mohammad, Y., Nishida, T., Okada, S.: Unsupervised simultaneous learning of gestures, actions and their associations for human-robot interaction. In: IROS 2009: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 2537–2544. IEEE Press, Piscataway (2009)

    Google Scholar 

  29. Mohammad, Y., Nishida, T.: Unsupervised discovery of basic human actions from activity recording datasets. In: SII 2012: IEEE/SICE International Symposium on System Integration, pp. 402–409. IEEE (2012)

    Google Scholar 

  30. Mohammad, Y., Ohmoto, Y., Nishida, T.: CPMD: a matlab toolbox for change point and constrained motif discovery. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 114–123. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. Mueen, A.: Enumeration of time series motifs of all lengths. In: 2013 IEEE 13th International Conference on Data Mining (ICDM). IEEE (2013)

    Google Scholar 

  32. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: SDM 2009: SIAM International Conference on Data Mining, pp. 473–484 (2009)

    Google Scholar 

  33. Nagai, Y., Nakatani, A., Qin, S., Fukuyama, H., Myowa-Yamakoshi, M., Asada, M.: Co-development of information transfer within and between infant and caregiver. In: 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), pp. 1–6. IEEE (2012)

    Google Scholar 

  34. Oates, T.: PERUSE: an unsupervised algorithm for finding recurring patterns in time series. In: International Conference on Data Mining, pp. 330–337 (2002)

    Google Scholar 

  35. Page, E.: Continuous inspection schemes. Biometrika 41, 100–115 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pantic, M., Pentland, A., Nijholt, A., Huang, T.: Machine understanding of human behavior. In: AI4HC 2007: IJCAI 2007 Workshop on Artificail Intelligence for Human Computing, pp. 13–24. University of Twente, Centre for Telematics and Information Technology (CTIT), January 2007

    Google Scholar 

  37. Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., Munch, S.: Detecting causality in complex ecosystems. Science 338(6106), 496–500 (2012)

    Article  MATH  Google Scholar 

  38. Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-dimensional data based on MDL principle. Mach. Learn. 58(2/3), 269–300 (2005)

    Article  MATH  Google Scholar 

  39. Vahdatpour, A., Amini, N., Sarrafzadeh, M.: Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In: IJCAI 2009: The International Joint Conference on Artificial Intelligence, pp. 1261–1266 (2009)

    Google Scholar 

  40. Willsky, A.S.: A survey of design methods for failure detection in dynamic systems. Automatica 12(6), 601–611 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work reported in this paper was financially supported by JSPS KAKENHI Grant Number 15K12098, and AFOSR/AOARD Grant No. FA2386-14-1-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohammad, Y., Nishida, T. (2016). \(MC^2\): An Integrated Toolbox for Change, Causality and Motif Discovery. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics