Skip to main content

Channeling and Backscatter Imaging

  • Chapter
  • First Online:
Book cover Helium Ion Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

While the default imaging mode in HIM uses secondary electrons, backscattered helium or neon contains valuable information about the sample composition and structure. In this chapter, we will discuss how backscattered helium can be used to obtain information about buried structures and provide qualitative elemental contrast. The discussion is extended to the use of channeling to increase image quality and obtain crystallographic information. As an example, we demonstrate that the period of a dislocation network in a film only two monolayers thick can be obtained with atomic precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For 30 keV He into Au \(E'=1.3\) MeV, and for Si \(E'=0.12\) MeV.

References

  1. I. Stensgaard, Reports. Prog. Phys. 55(7), 989 (1992). doi:10.1088/0034-4885/55/7/003

    Google Scholar 

  2. J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 34(14), 1 (1965)

    Google Scholar 

  3. L.C. Feldman, J.W. Mayer, S.T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982)

    Google Scholar 

  4. M. Nastasi, J. Mayer, Y. Wang, Ion Beam Analysis (CRC Press, 2014). doi:10.1201/b17310

    Google Scholar 

  5. A.A. van Gorkum, Phys. Lett. A 75(1–2), 134 (1979). doi:10.1016/0375-9601(79)90302-5

    Article  ADS  Google Scholar 

  6. R. Ramachandra, B.J. Griffin, D.C. Joy, Ultramicroscopy 109(6), 748 (2009). doi:10.1016/j.ultramic.2009.01.013

    Article  Google Scholar 

  7. J. Ferrón, E. Alonso, R.A. Baragiola, A. Oliva-Florio, Phys. Rev. B 24(8), 4412 (1981). doi:10.1103/PhysRevB.24.4412

    Google Scholar 

  8. H.A. Bethe, Phys. Rev. 59(11), 913 (1941). doi:10.1103/PhysRev.59.913

    Google Scholar 

  9. R.A. Baragiola, E.V. Alonso, A.O. Florio, Phys. Rev. B 19(1), 121 (1979). doi:10.1103/PhysRevB.19.121

    Google Scholar 

  10. G. Hlawacek, I. Ahmad, M.A. Smithers, E.S. Kooij, Ultramicroscopy 135C, 89 (2013). doi:10.1016/j.ultramic.2013.07.010

    Google Scholar 

  11. J.A. Notte, B.W. Ward, N.P. Economou, R. Hill, R. Percival, L. Farkas, S. McVey, D.G. Seiler, A.C. Diebold, R. McDonald, C.M. Garner, D. Herr, R.P. Khosla, E.M. Secula, in AIP Conference Proceedings, vol. 931, ed. by D.G. Seiler, A.C. Diebold, R. McDonald, C.M. Garner, D. Herr, R.P. Khosla, E.M. Secula (AIP, 2007), vol. 931, pp. 489–496. doi:10.1063/1.2799423

  12. R.A. Baragiola, E. Alonso, J. Ferron, A. Oliva-Florio, Surf. Sci. 90(2), 240 (1979). doi:10.1016/0039-6028(79)90341-8

    Google Scholar 

  13. B. Brusilovsky, Vacuum 35(12), 595 (1985). doi:10.1016/0042-207X(85)90322-7

    Google Scholar 

  14. S. Drentje, Phys. Lett. A 24(1), 12 (1967). doi:10.1016/0375-9601(67)90169-7

    Google Scholar 

  15. J.S. Briggs, A.P. Pathak, J. Phys. C Solid State Phys. 7(11), 1929 (2001). doi:10.1088/0022-3719/7/11/009

    Google Scholar 

  16. G.D. Magnuson, C.E. Carlston, Phys. Rev. 129(6), 2403 (1963). doi:10.1103/PhysRev.129.2403

    Google Scholar 

  17. M.T. Robinson, in Sputtering by Part. Bombard. I, ed. by R. Behrisch (Springer, Berlin, 1981), pp. 73–144. doi:10.1007/3540105212_8

    Google Scholar 

  18. U. Von Gemmingen, Surf. Sci. 120(2), 334 (1982). doi:10.1016/0039-6028(82)90154-6

    Google Scholar 

  19. G. Hlawacek, M. Jankowski, H. Wormeester, R. van Gastel, H.J. Zandvliet, B. Poelsema, Ultramicroscopy 162, 17 (2015). doi:10.1016/j.ultramic.2015.11.009

    Google Scholar 

  20. A. George, M. Knez, G. Hlawacek, D. Hagedoorn, H.H.J. Verputten, R. van Gastel, J.E. ten Elshof, Langmuir 28(5), 3045 (2012). doi:10.1021/la204437r

    Google Scholar 

  21. M.A. Karolewski, R.G. Cavell, Surf. Sci. 605(19–20), 1842 (2011). doi:10.1016/j.susc.2011.06.022

    Google Scholar 

  22. M. Nègre, J. Mischler, N. Bénazeth, C. Noguera, D. Spanjaard, Surf. Sci. 78, 174 (1978)

    Article  ADS  Google Scholar 

  23. W. Brandt, R. Dobrin, H. Jack Jr., R. Laubert, S. Roth, Can. J. Phys. 46(6), 537 (1968). doi:10.1139/p68-067

    Google Scholar 

  24. W. Brandt, J.M. Khan, D.L. Potter, R.D. Worley, H.P. Smith, Phys. Rev. Lett. 14(2), 42 (1965). doi:10.1103/PhysRevLett.14.42

    Google Scholar 

  25. O.S. Oen, M.T. Robinson, Nucl. Inst. Meth. 132(3), 647 (1976). doi:10.1016/0029-554X(76)90806-5

    Google Scholar 

  26. V. Veligura, G. Hlawacek, R. van Gastel, H.J.W. Zandvliet, B. Poelsema, Beilstein J. Nanotechnol. 3, 501 (2012). doi:10.3762/bjnano.3.57

    Google Scholar 

  27. D.C. Bell, Microsc. Microanal. 15(2), 147 (2009). doi:10.1017/S1431927609090138

    Google Scholar 

  28. R.E. Franklin, E.C.G. Kirk, J.R.A. Cleaver, H. Ahmed, J. Mater. Sci. Lett. 7(1), 39 (1988). doi:10.1007/BF01729909

    Google Scholar 

  29. R. Levi-Setti, T.R. Fox, K. Lam, Nucl. Inst. Meth. Phys. Res. 205(1–2), 299 (1983). doi:10.1016/0167-5087(83)90201-6

    Google Scholar 

  30. M.L. Swanson, in Handbook of Modern Ion Beam Material Analysis: Materials Research Society Handbook, ed. by J.R. Tesmer, M.A. Nastasi (Materials Research Society, Pittsburgh, 1995), chap. 10, pp. 231–300

    Google Scholar 

  31. B.L. Doyle, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms (2015). doi:10.1016/j.nimb.2015.08.047

    Google Scholar 

  32. B.L. Doyle, Channeling (2015). http://www.sandia.gov/pcnsc/departments/iba/ibatable.html

  33. B.L. Doyle, A. Corona, A.Q. Nguyen, Ion Channeling Revisited. Technical Report, Radiation Solid Interactions Department 01111, Sandia National Labs, Albuquerque (2015)

    Google Scholar 

  34. V. Veligura, G. Hlawacek, R.P. Berkelaar, R. van Gastel, H.J.W. Zandvliet, B. Poelsema, Beilstein J. Nanotechnol. 4, 453 (2013). doi:10.3762/bjnano.4.53

    Google Scholar 

  35. S. Sijbrandij, B. Thompson, J.A. Notte, B.W. Ward, N.P. Economou, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(6), 2103 (2008). doi:10.1116/1.2993262

    Google Scholar 

  36. G. Hlawacek, V. Veligura, R. van Gastel, B. Poelsema, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 32(2), 020801 (2014). doi:10.1116/1.4863676

    Google Scholar 

  37. I. Gertner, M. Meron, B. Rosner, Phys. Rev. A 21(4), 1191 (1980). doi:10.1103/PhysRevA.21.1191

    Google Scholar 

  38. R. van Gastel, G. Hlawacek, H.J. Zandvliet, B. Poelsema, Microelectron. Reliab. 52(9–10), 2104 (2012). doi:10.1016/j.microrel.2012.06.130

    Google Scholar 

  39. E.J. Faber, R.A.M. Wolters, J. Schmitz, I.E.E.E. Trans, Semicond. Manuf. 25(3), 339 (2012). doi:10.1109/TSM.2012.2202793

    Google Scholar 

  40. A.C. Diebold (ed.), Handbook of Silicon Semiconductor Metrology (CRC Press, 2001)

    Google Scholar 

  41. K. Ura, S. Aoyagi, J. Electron Microsc. (Tokyo). 49(1), 157 (2000). doi:10.1093/oxfordjournals.jmicro.a023780

    Google Scholar 

  42. M.A.E. Jepson, B.J. Inkson, X. Liu, L. Scipioni, C. Rodenburg, EPL Europhysics Lett. 86(2), 26005 (2009). doi:10.1209/0295-5075/86/26005

    Google Scholar 

  43. L.C. Feldman, Phys. Scr. 28(3), 303 (2006). doi:10.1088/0031-8949/28/3/007

    Article  ADS  Google Scholar 

  44. J. Knapp, D. Follstaedt, B. Doyle, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 7–8, 38 (1985). doi:10.1016/0168-583X(85)90526-9

    Google Scholar 

  45. J. Davies, P. Norton, Nucl. Inst. Meth. 168(1–3), 611 (1980). doi:10.1016/0029-554X(80)91319-1

    Google Scholar 

  46. G. Hlawacek, V. Veligura, S. Lorbek, T.F. Mocking, A. George, R. van Gastel, H.J.W. Zandvliet, B. Poelsema, Beilstein J. Nanotechnol. 3, 507 (2012). doi:10.3762/bjnano.3.58

    Google Scholar 

  47. K.Y. Wu, S.Y. Yu, Y.T. Tao, Langmuir 25(11), 6232 (2009). doi:10.1021/la900046b

    Google Scholar 

  48. J. Singh, J.E. Whitten, J. Phys. Chem. C 112(48), 19088 (2008). doi:10.1021/jp807536z

    Google Scholar 

  49. T.F. Mocking, G. Hlawacek, H.J.W. Zandvliet, Surf. Sci. 606(11–12), 924 (2012). doi:10.1016/j.susc.2012.02.007

    Google Scholar 

  50. K. Buchholt, P. Eklund, J. Jensen, J. Lu, A.L. Spetz, L. Hultman, Scr. Mater. 64(12), 1141 (2011). doi:10.1016/j.scriptamat.2011.03.013

    Google Scholar 

  51. K. Aït-Mansour, H. Brune, D. Passerone, M. Schmid, W. Xiao, P. Ruffieux, A. Buchsbaum, P. Varga, R. Fasel, O. Gröning, Phys. Rev. B 86(8), 085404 (2012). doi:10.1103/PhysRevB.86.085404

  52. M. Jankowski, H. Wormeester, H.J.W. Zandvliet, B. Poelsema, Phys. Rev. B 89(23), 235402 (2014). doi:10.1103/PhysRevB.89.235402

  53. C. Langlois, T. Douillard, H. Yuan, N. Blanchard, A. Descamps-Mandine, B. Van de Moortèle, C. Rigotti, T. Epicier, Ultramicroscopy 157, 65 (2015). doi:10.1016/j.ultramic.2015.05.023

    Google Scholar 

  54. A. D’Alfonso, B. Forbes, L. Allen, Ultramicroscopy 134, 18 (2013). doi:10.1016/j.ultramic.2013.06.019

    Google Scholar 

  55. J.A. Notte, R. Hill, S.M. McVey, R. Ramachandra, B.J. Griffin, D.C. Joy, Microsc. Microanal. 16(05), 599 (2010). doi:10.1017/S1431927610093682

    Google Scholar 

Download references

Acknowledgments

We want to thank B. Doyle for providing the channeling figures and the texts he shared with us, as well as for the insightful discussions. We also acknowledge support from the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), and which is funded in part by the Dutch Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Hlawacek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hlawacek, G., Veligura, V., van Gastel, R., Poelsema, B. (2016). Channeling and Backscatter Imaging. In: Hlawacek, G., Gölzhäuser, A. (eds) Helium Ion Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41990-9_9

Download citation

Publish with us

Policies and ethics