Skip to main content

Applications of GFIS in Semiconductors

  • Chapter
  • First Online:
Helium Ion Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Electron beam and ion beam based techniques such as SEM , TEM, and FIB are used extensively by the semiconductor industry to provide analytical, metrology, and debug capabilities for process development, manufacturing yield monitoring, and new product ramp. The unique imaging and nanomachining attributes of the helium and neon Gas Field Ionization Source (GFIS) technology may extend beyond what electron and gallium beams can achieve alone. In this chapter, emerging semiconductor applications for helium and neon GFIS are reviewed and the key imaging and nanomachining limitations and attributes of both are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Orloff, M.W. Utlaut, L. Swanson, High Resolution Focused Ion Beams: FIB and Its Applications (Springer Press, 2003)

    Google Scholar 

  2. L.A. Giannuzzi, F.A. Stevens, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer Press, 2004)

    Google Scholar 

  3. EDFAS, Microelectronics Failure Analysis, 5th edn. (ASM International, 2004)

    Google Scholar 

  4. http://www.intel.com

  5. R. Clampitt, Nucl. Instrum. Methods Phys. Res. A 189(1), 6 (1981)

    Article  Google Scholar 

  6. L.W. Swanson, Nucl. Instrum. Methods Phys. Res. A 218(1–3), 7 (1983)

    Google Scholar 

  7. B.W. Ward, J.A. Notte, N.P. Economou, J. Vac. Sci. Technol., B 24, 2871–2874 (2006)

    Article  Google Scholar 

  8. J. Notte, F. Rahman, S. McVey, S. Tan, R. Livengood, Microsc. Microanal. 16, 28–29 (Portland, OR, 2010)

    Google Scholar 

  9. J.L. Hanssen, S.B. Hill, J. Orloff, J.J. McClelland, Nano Lett. 8(9) (2008)

    Google Scholar 

  10. B. Knuffman, A.V. Steele, J.J. McClelland, J. Appl. Phys. 114(4), 044303 (2013)

    Article  ADS  Google Scholar 

  11. Q. Ji, X. Jiang, T.J. King, K.N. Leung, K. Standiford, S.B. Wilde, J. Vac. Sci. Technol. B 20(6), 2717–2720 (2002)

    Article  Google Scholar 

  12. L. Bischoff, Ultramicroscopy 103(1), 59–66 (2005)

    Article  Google Scholar 

  13. G. Hlawacek, V. Veligura, R.V. Gastel, B. Poelsema, J. Vac. Sci. Technol. B 32(2), 020801 (2014)

    Google Scholar 

  14. D.C. Bell, Microsc. Microanal. 17, 660–661 (Nashville, TN, 2011)

    Google Scholar 

  15. O. Lehtinen, J. Kotakoski, A.V. Krasheninnikov, J. Keinonen, Nanotechnology 22(17), 175306–175315 (2011)

    Article  ADS  Google Scholar 

  16. M.A.E. Jepson, B.J. Inkson, C. Rodenburg, D.C. Bell, Europhys. Lett. 85(4), 46001–46004 (2009)

    Article  ADS  Google Scholar 

  17. D.C. Bell, M.C. Lemme, L.A. Stern, J.R. Williams, C.M. Marcus, Nanotechnology 20(45), 455301–455305 (2009)

    Article  ADS  Google Scholar 

  18. V. Veligura, G. Hlawacek, R.P. Berkelaar, R. van Gastel, H.J. Zandvliet, B. Poelsema, Beilstein J. Nanotechnol. 4, 453–460 (2013)

    Article  Google Scholar 

  19. R. Livengood, S. Tan, Y. Greenzweig, J. Notte, S. McVey, J. Vac. Sci. Technol. B 27(6), 3244–3249 (2009)

    Article  Google Scholar 

  20. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1984)

    Book  Google Scholar 

  21. S. Tan, R. Livengood, D. Shima, J. Notte, S. McVey, J. Vac. Sci. Technol. B 28(6), C6F15–C16F21 (2010)

    Google Scholar 

  22. D. Pichard, in EIPBN (Nashville, TN, 2013)

    Google Scholar 

  23. J. Yang, D.C. Ferranti, L.A. Stern, C.A. Sanford, J. Huang, Z. Ren, L.C. Qin, A.R. Hall, Nanotechnology 22(28), 285310 (2011)

    Article  Google Scholar 

  24. N. Kalhor, S.A. Boden, H. Mizuta, Microelectron. Eng. 114, 70–77 (2014)

    Article  Google Scholar 

  25. M.C. Lemme, D.C. Bell, J.R. Williams, L.A. Stern, P. Jarillo-Herrero, C.M. Marcus, ACS Nano 3(9), 2674–2676 (2009)

    Article  Google Scholar 

  26. S. Nakaharai, T. Iijima, S. Ogawa, S.-L. Li, K. Tsukagoshi, S. Sato, N. Yokoyama, IEEE Trans. Nanotechnol. 13(6), 1039–1043 (2014)

    Article  ADS  Google Scholar 

  27. S.A. Cybart, E.Y. Cho, T.J. Wong, B.H. Wehlin, M.K. Ma, C. Huynh, R.C. Dynes, Nat. Nanotechnol. 10(7), 598–602 (2015)

    Article  ADS  Google Scholar 

  28. S. Tan, K. Klein, D. Shima, R. Livengood, E. Mutunga, A. Vladár, J. Vac. Sci. Technol. B 32(6), 06FA01 (2014)

    Google Scholar 

  29. S. Tan, R. Livengood, Y. Greenzweig, Y. Drezner, D. Shima, J. Vac. Sci. Technol. B 30(6), 06F606 (2012)

    Article  Google Scholar 

  30. J.S. Custer, M.O. Thompson, D.C. Jacobson, J.M. Poate, S. Roorda, W.C. Sinke, F. Spaepen, Appl. Phys. Lett. 64(4), 437–439 (1994)

    Article  ADS  Google Scholar 

  31. S. Tan, R.H. Livengood, Y. Greenzweig, Y. Drezner, R. Hallstein, C. Scheffler, in ISTFA (Phoenix, AZ, 2012), pp. 436–439

    Google Scholar 

  32. K.E.D. Santamore, J. Orloff, J. Melngailis, J. Vac. Sci. Technol. B 15(6), 2346–2349 (1997)

    Article  Google Scholar 

  33. L. Scipioni, C.A. Sanford, J. Notte, B. Thompson, S. McVey, J. Vac. Sci. Technol. B 27(6), 3250–3255 (2009)

    Article  Google Scholar 

  34. G. Hlawacek, V. Veligura, S. Lorbek, T.F. Mocking, A. George, R. van Gastel, H.J. Zandvliet, B. Poelsema, Beilstein J. Nanotechnol. 3, 507–512 (2012)

    Article  Google Scholar 

  35. T.I. Shu Nakaharai, S. Ogawa, S. Suzuki, S.-L. Li, K. Tsukagoshi, S. Sato, N. Yokoyama, ACS Nano 7(7), 5694–5700 (2013)

    Google Scholar 

  36. J. Berthelot, S.S. Acimovic, M.L. Juan, M.P. Kreuzer, J. Renger, R. Quidant, Nat. Nanotechnol. 9(4), 295–299 (2014)

    Article  ADS  Google Scholar 

  37. M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D.F. Ogletree, P.J. Schuck, S. Cabrini, A. Weber-Bargioni, Nano Lett. 13(6), 2687–2691 (2013)

    Article  ADS  Google Scholar 

  38. F. Aramaki, T. Ogawa, O. Matsuda, T. Kozakai, Y. Sugiyama, H. Oba, A. Yasaka, T. Amano, H. Shigemura, O. Suga, Proc. SPIE 7969, 79691C (2011)

    Article  ADS  Google Scholar 

  39. F. Aramaki, T. Kozakai, O. Matsuda, O. Takaoka, Y. Sugiyama, H. Oba, K. Aita, A. Yasaka, in BACUS News , vol. 29 (2013), pp. 1–8

    Google Scholar 

  40. C.M. Gonzalez, R. Timilsina, G. Li, G. Duscher, P.D. Rack, W. Slingenbergh, W.F. van Dorp, J.T.M. De Hosson, K.L. Klein, H.M. Wu, L.A. Stern, J. Vac. Sci. Technol. B 32(2), 021602 (2014)

    Article  Google Scholar 

  41. R.H. Livengood, M. Grumski, Y. Greenzweig, T. Liang, R. Jamison, Q. Xie, Phys. Procedia 1(1), 143–148 (2008)

    Article  ADS  Google Scholar 

  42. M.T. Postek, A.E. Vladár, Proc. SPIE 6922, 69220B (2008)

    Article  ADS  Google Scholar 

  43. E. I. C. Jr., Microelectronics Failure Analysis, Desk Reference, 6th edn. (2004)

    Google Scholar 

  44. R. Rosenkranz, J. Mater. Sci. Mater. Electron. 22(10), 1523–1535 (2011)

    Article  Google Scholar 

  45. K. Ura, S. Aoyagi, J. Electron Microsc. 49(1), 5 (2000)

    Article  Google Scholar 

  46. C.C. Ooi, K.H. Siek, K. S. Sim, in IPFA (2001), pp. 112–116

    Google Scholar 

  47. R. Reiche, R. Kaesmaier, R. Rosenkranz, U. Ritter, S. Teichert, S. Leinert, Microsc. Microanal. 121, 11–14 (2009)

    Google Scholar 

  48. F. Aramaki, T. Kozakai, O. Matsuda, A. Yasaka, S. Yoshikawa, K. Kanno, H. Miyashita, N. Hayashi, Proc. SPIE 9235, 92350F (2014)

    ADS  Google Scholar 

  49. R.H. Livengood, P. Winer, V.R. Rao, J. Vac. Sci. Technol. B 17(1), 40–43 (1999)

    Article  Google Scholar 

  50. S. Tan, R.H. Livengood, R. Hallstein, D. Shima, Y. Greenzweig, J. Notte, S. McVey, in ISTFA (San Jose, CA, 2011), pp. 40–45

    Google Scholar 

  51. M. Rudneva, E. van Veldhoven, S.K. Malladi, D. Maas, H.W. Zandbergen, J. Mater. Res. 28(08), 1013–1020 (2013)

    Article  ADS  Google Scholar 

  52. F.F. Rahman, J.A. Notte, R.H. Livengood, S. Tan, Ultramicroscopy 126, 10–18 (2013)

    Article  Google Scholar 

  53. S. Tan, R. Livengood, P. Hack, R. Hallstein, D. Shima, J. Notte, S. McVey, J. Vac. Sci. Technol. B 29(6), 06F604 (2011)

    Article  Google Scholar 

  54. R.H. Livengood, S. Tan, in EIPBN (Nashville, TN, 2013)

    Google Scholar 

  55. H. Wu, L. Stern, D.C. Ferranti, D. Xia, M.W. Phaneuf, in ISTFA (San Jose, CA, 2013), pp. 118–122

    Google Scholar 

  56. H. Wu, D. Ferranti, L. Stern, Microelectr. Reliab. 54(9–10), 1779–1784 (2014)

    Article  Google Scholar 

  57. S. Tan, R. Hallstein, R. Livengood, H. Prakasam, L. Patel, O. Nastasescu, C. Scheffler, in EIPBN (San Diego, CA, 2015)

    Google Scholar 

  58. S. Tan, R. Hallstein, R.H. Livengood, W. Ali, Microsc. Microanal. (Columbus, OH, 2016)

    Google Scholar 

  59. F.A. Stevie, C.B. Vartuli, L.A. Giannuzzi, T.L. Shofner, S.R. Brown, B. Rossie, F. Hillion, R.H. Mills, M. Antonell, R.B. Irwin, B.M. Purcell, Surf. Interface Anal. 31(5), 345–351 (2001)

    Article  Google Scholar 

  60. J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, MRS Bull. 32, 400–407 (2007)

    Article  Google Scholar 

  61. D. Wei, C. Huynh and A. Ribbe, Microsc. Microanal. 21(Suppl3), 1409–1410 (Portland, OR, 2015)

    Google Scholar 

  62. P. Jung, Nucl. Instrum. Methods Phys. Res. B 91(1–4), 4 (1994)

    Google Scholar 

  63. N.A. Roberts, C.M. Gonzalez, J.D. Fowlkes, P.D. Rack, Nanotechnology 24(41), 415301 (2015)

    Google Scholar 

  64. J.H. Noh, J.D. Fowlkes, R. Timilsina, M.G. Stanford, B.B. Lewis, P.D. Rack, ACS Appl. Mater. Interfaces 7(7), 4179–4184 (2015)

    Article  Google Scholar 

  65. M.G. Stanford, B.B. Lewis, V. Iberi, J.D. Fowlkes, S. Tan, R. Livengood, P.D. Rack, Small (2016)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank various external and internal collaborators and colleagues for their valuable discussions, outstanding equipment maintenance, sample preparation, cross-section, and TEM analysis support. In particular we would like to acknowledge: John Notte, Lewis Stern, Dave Ferranti, and Shawn McVey from Carl Zeiss Microscopy; Andras Vladar and Kate Klein from NIST; Philip Rack from U. of Tennessee in Knoxville; and Roy Hallstein, Darryl Shima, Paul Hack, Laxa Patel, Yuval Greenzweig, Chris Scheffler, and Waqas Ali from Intel Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shida Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tan, S., Livengood, R. (2016). Applications of GFIS in Semiconductors. In: Hlawacek, G., Gölzhäuser, A. (eds) Helium Ion Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41990-9_19

Download citation

Publish with us

Policies and ethics