Skip to main content

Ionoluminescence

  • Chapter
  • First Online:
Helium Ion Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

After a sample has been excited by ion irradiation it has several ways to release the excess energy. One of them is photon emission. This process is called ionoluminescence (IL). The IL signal contains information on the electronic structure of the sample. Furthermore, it can help to reveal the processes occurring in the sample under the influence of an ion beam. Analysis of IL is significantly complicated by the fact that ion beam not only induces light emission, but also modifies the luminescence properties of the material. Several types of materials were investigated in HIM in terms of ionoluminescence: semiconductors, minerals, organic compounds. Analysis of the IL signal and its behavior allowed not only to identify the origin of the signal, but also to study the formation of ion-induced defects, their migration and interaction with each other. The effect of crystal coloration in case of the alkali halides led to a possibility for the creation of nano–scaled luminescent patterns using the He\(^+\) ion beam. Such ionoluminescent patterns allowed the visualization and direct experimental measurements of the ion beam interaction volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is responsible for the high lateral resolution in SE mode.

References

  1. A. Marfunin, in Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer, Berlin, Heidelberg, 1979), chap. 5, pp. 141–222. doi:10.1007/978-3-642-67112-8_5

    Google Scholar 

  2. W. Baird, M. Zivitz, E. Thomas, Phys. Rev. A 12(3), 876 (1975). doi:10.1103/PhysRevA.12.876. http://link.aps.org/doi/10.1103/PhysRevA.12.876

    Google Scholar 

  3. C. White, Nucl. Instrum. Methods 149(1–3), 497 (1978). doi:10.1016/0029-554X(78)90916-3. http://linkinghub.elsevier.com/retrieve/pii/0029554X78909163

    Google Scholar 

  4. T. Franklin, Scanning Ionoluminescence Microscopy with a Helium Ion Microscope. Ph.D. thesis, University of Southampton (2012)

    Google Scholar 

  5. B. Valeur, M. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2nd edn. (Wiley-VCH Verlag GmbH & Co. KGaA, 2012). http://dx.doi.org/10.1002/9783527650002

  6. U. Scherz, in Lehrbuch der Experimentalphysik (1992), pp. 1–107

    Google Scholar 

  7. R. Williams, K. Song, J. Phys. Chem. Solids 51(7), 679 (1990). doi:10.1016/0022-3697(90)90144-5. http://linkinghub.elsevier.com/retrieve/pii/0022369790901445

    Google Scholar 

  8. B. Yacobi, D. Holt, J. Appl. Phys. 59(4), R1 (1986). doi:10.1063/1.336491. http://scitation.aip.org/content/aip/journal/jap/59/4/10.1063/1.336491

    Google Scholar 

  9. M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter (eds.), Cathodoluminescence in Geosciences. (Springer-Verlag, Berlin Heidelberg, 2000). doi:10.1007/978-3-662-04086-7

    Google Scholar 

  10. P. Townsend, Nucl. Instrum. Meth. B 286, 35 (2012). doi:10.1016/j.nimb.2011.10.070. http://linkinghub.elsevier.com/retrieve/pii/S0168583X11010305

    Google Scholar 

  11. S. Boden, T. Franklin, L. Scipioni, D. Bagnall, H. Rutt, Microsc. Microanal. 18(6), 1253 (2012). doi:10.1017/S1431927612013463. http://www.ncbi.nlm.nih.gov/pubmed/23237545

    Google Scholar 

  12. S. Ogawa, T. Iijima, S. Awata, R. Sugie, N. Kawasaki, Y. Otsuka, Microsc. Microanal. 18(S2), 814 (2012). doi:10.1017/S1431927612005922. http://www.journals.cambridge.org/abstract_S1431927612005922

    Google Scholar 

  13. J. Demarche, D. Barba, G. Ross, G. Terwagne, Nucl. Instrum. Methods B 272, 141 (2012). doi:10.1016/j.nimb.2011.01.051. http://www.sciencedirect.com/science/article/pii/S0168583X1100070X

    Google Scholar 

  14. V. Veligura, G. Hlawacek, R. van Gastel, H. Zandvliet, B. Poelsema, J. Phys. Condens. Matter 26(16), 165401 (2014). doi:10.1088/0953-8984/26/16/165401. http://stacks.iop.org/0953-8984/26/i=16/a=165401?key=crossref.aa13e4af4cd25fe281ac4640b30baa88. http://www.ncbi.nlm.nih.gov/pubmed/24691214

    Google Scholar 

  15. V. Veligura, G. Hlawacek, U. Jahn, R. van Gastel, H. Zandvliet, B. Poelsema, J. Appl. Phys. 115(18), 183502 (2014). doi:10.1063/1.4875480. http://scitation.aip.org/content/aip/journal/jap/115/18/10.1063/1.4875480

    Google Scholar 

  16. V. Veligura, G. Hlawacek, R. van Gastel, H. Zandvliet, B. Poelsema, J. Lumin. 157, 321 (2015). doi:10.1016/j.jlumin.2014.09.016. http://www.sciencedirect.com/science/article/pii/S0022231314005249

    Google Scholar 

  17. S. Pennycook, Scanning 30(4), 287 (2008). doi:10.1002/sca.20114. http://dx.doi.org/10.1002/sca.20114

    Google Scholar 

  18. V. Veligura, Material characterization and modification using helium ion microscopy: various examples. Ph.D. thesis, University of Twente, Enschede (2014). http://doc.utwente.nl/90190/

  19. M. Reshchikov, M. H. J. Appl. Phys. 97(6), 061301 (2005). doi:10.1063/1.1868059. http://link.aip.org/link/JAPIAU/v97/i6/p061301/s1&Agg=doi

    Google Scholar 

  20. A. Cremades, J. Piqueras, C. Xavier, T. Monteiro, E. Pereira, B. Meyer, D. Hofmann, S. Fischer, Mater. Sci. Eng. B 42(1–3), 230 (1996). doi:10.1016/S0921-5107(96)01712-6. http://linkinghub.elsevier.com/retrieve/pii/S0921510796017126

    Google Scholar 

  21. M. Herrera Zaldivar, P. FernĂ¡ndez, J. Piqueras, J. Appl. Phys. 83(5), 2796 (1998). doi:10.1063/1.366634. http://link.aip.org/link/JAPIAU/v83/i5/p2796/s1&Agg=doi

    Google Scholar 

  22. M. Herrera, A. Cremades, J. Piqueras, M. Stutzmann, O. Ambacher, J. Appl. Phys. 95(10), 5305 (2004). doi:10.1063/1.1690454. http://link.aip.org/link/?JAP/95/5305/1&Agg=doi

    Google Scholar 

  23. W. Lee, H. Lee, S. Park, K. Watanabe, K. Kumagai, T. Yao, J. Chang, T. Sekiguchi, J. Cryst. Growth 351(1), 83 (2012). doi:10.1016/j.jcrysgro.2012.04.016. http://linkinghub.elsevier.com/retrieve/pii/S0022024812002825

    Google Scholar 

  24. A. Kakanakova-Georgieva, D. Nilsson, X. Trinh, U. Forsberg, N. Son, E. Janzén, Appl. Phys. Lett. 102(13), 132113 (2013). doi:10.1063/1.4800978. http://link.aip.org/link/APPLAB/v102/i13/p132113/s1&Agg=doi

    Google Scholar 

  25. V. Vil’kotskii, V. Pivovarov, J. Appl. Spectrosc. 19(6), 1604 (1973). doi:10.1007/BF00611068. http://link.springer.com/10.1007/BF00611068

    Google Scholar 

  26. T. Zhang, R. Elliman, G. Carter, Nucl. Instrum. Methods 209–210, 761 (1983). doi:10.1016/0167-5087(83)90880-3. http://linkinghub.elsevier.com/retrieve/pii/0167508783908803

    Google Scholar 

  27. R. Livengood, S. Tan, Y. Greenzweig, J. Notte, S. McVey, J. Vac. Sci. Technol. B 27(6), 3244 (2009). http://search.ebscohost.com/login.aspx?direct=true&db=inh&AN=11023193&site=ehost-live

  28. L. Joulaud, J. Mangeney, N. Chimot, P. Crozat, G. Fishman, J. Bourgoin, J. Appl. Phys. 97(6), 063515 (2005). doi:10.1063/1.1861966. http://link.aip.org/link/JAPIAU/v97/i6/p063515/s1&Agg=doi

    Google Scholar 

  29. H. Němec, L. Fekete, F. Kadlec, P. Kužel, M. Martin, J. Mangeney, J. Delagnes, P. Mounaix, Phys. Rev. B 78(23), 235206 (2008). doi:10.1103/PhysRevB.78.235206. http://link.aps.org/doi/10.1103/PhysRevB.78.235206

  30. A. Kamarou, W. Wesch, E. Wendler, A. Undisz, M. Rettenmayr, Phys. Rev. B 78(5), 054111 (2008). doi:10.1103/PhysRevB.78.054111. http://link.aps.org/doi/10.1103/PhysRevB.78.054111

  31. M. Verheijen, R. Algra, M. Borgström, G. Immink, E. Sourty, W. van Enckevort, E. Vlieg, E. Bakkers, Nano Lett. 7(10), 3051 (2007). doi:10.1021/nl071541q. http://www.ncbi.nlm.nih.gov/pubmed/17887714

    Google Scholar 

  32. R. Algra, M. Hocevar, M. Verheijen, I. Zardo, G. Immink, W. van Enckevort, G. Abstreiter, L. Kouwenhoven, E. Vlieg, E. Bakkers, Nano Lett. 11(4), 1690 (2011). doi:10.1021/nl200208q. http://www.ncbi.nlm.nih.gov/pubmed/21417242

    Google Scholar 

  33. V. Veligura, G. Hlawacek, R. Berkelaar, R. van Gastel, H. Zandvliet, B. Poelsema, Beilstein J. Nanotechnol. 4, 453 (2013). doi:10.3762/bjnano.4.53. http://www.beilstein-journals.org/bjnano/content/4/1/53. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3740815&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  34. H. Hersh, Phys. Rev. 148(2), 928 (1966). doi:10.1103/PhysRev.148.928. http://link.aps.org/doi/10.1103/PhysRev.148.928

    Google Scholar 

  35. H. Pick, Il Nuovo Cimento 7(S2), 498 (1958). doi:10.1007/BF02751492. http://www.springerlink.com/index/M6T258G807GH15Q8.pdf link.springer.com/10.1007/BF02751492

    Google Scholar 

  36. D. Pooley, Proc. Phys. Soc. 87(1), 245 (1966). doi:10.1088/0370-1328/87/1/327. http://stacks.iop.org/0370-1328/87/i=1/a=327?key=crossref.5988e3ad3f8a3678dabafbc8a28098f1

    Google Scholar 

  37. A. Onaka, I. Fujita, A. Fukuda, J. Phys. Soc. Jpn 18(Suppl. 2), 263 (1963)

    Google Scholar 

  38. C.R.A. Catlow, K.M. Diller, L.W. Hobbs, Philos. Mag. A 42(2), 123 (1980). doi:10.1080/01418618009365806. http://www.tandfonline.com/doi/abs/10.1080/01418618009365806

    Google Scholar 

  39. V. Puchin, A. Shluger, N. Itoh, Phys. Rev. B 52(9), 6254 (1995). doi:10.1103/PhysRevB.52.6254. http://link.aps.org/doi/10.1103/PhysRevB.52.6254

    Google Scholar 

  40. T. Castner, W. Känzig, J. Phys. Chem. Solids 3(3–4), 178 (1957). doi:10.1016/0022-3697(57)90023-9. http://linkinghub.elsevier.com/retrieve/pii/0022369757900239

    Google Scholar 

  41. A. Shluger, K. Tanimura, Phys. Rev. B 61(8), 5392 (2000). doi:10.1103/PhysRevB.61.5392. http://link.aps.org/doi/10.1103/PhysRevB.61.5392

    Google Scholar 

  42. T. Ukai, N. Matsunami, K. Morita, N. Itoh, Phys. Lett. A 56(2), 127 (1976). doi:10.1016/0375-9601(76)90169-9. http://linkinghub.elsevier.com/retrieve/pii/0375960176901699

    Google Scholar 

  43. Y. Kawaguchi, M. Dawes, S. Langford, J. Dickinson, J. Appl. Phys. 89(4), 2370 (2001). doi:10.1063/1.1340599. http://link.aip.org/link/JAPIAU/v89/i4/p2370/s1&Agg=doi

    Google Scholar 

  44. M. Aguilar, P. Chandler, P. Townsends, Radiat. Eff. 40(1–2), 1 (1979). doi:10.1080/00337577908234484. http://www.tandfonline.com/doi/abs/10.1080/00337577908234484

    Google Scholar 

  45. M. Suchańska, A. Bazhin, E. Konopelko, Phys. Status Solidi B 182(1), 231 (1994). doi:10.1002/pssb.2221820124. http://doi.wiley.com/10.1002/pssb.2221820124

    Google Scholar 

  46. B. Gorobets, A. Rogojine, Luminescent spectra of minerals (Ed. WIMS, 2002)

    Google Scholar 

  47. R. Webb, L. Jensen, S. Langford, J. Dickinson, J. Appl. Phys. 74(4), 2338 (1993). doi:10.1063/1.354719. http://link.aip.org/link/JAPIAU/v74/i4/p2338/s1&Agg=doi

    Google Scholar 

  48. N. Nesmelov, Sov. Phys. J. 22(12), 1306 (1979). doi:10.1007/BF01220819. http://dx.doi.org/10.1007/BF01220819

    Google Scholar 

  49. T. Timusk, J. Phys. Chem. Solids 26(5), 849 (1965). doi:10.1016/0022-3697(65)90260-X. http://linkinghub.elsevier.com/retrieve/pii/002236976590260X

    Google Scholar 

  50. T. Timusk, W. Martienssen, Phys. Rev. 128(4), 1656 (1962). doi:10.1103/PhysRev.128.1656. http://link.aps.org/doi/10.1103/PhysRev.128.1656

    Google Scholar 

  51. Z. Egemberdiev, A. Elango, S. Zazubovich, Phys. Status Solidi B 97(2), 449 (1980). doi:10.1002/pssb.2220970208. http://doi.wiley.com/10.1002/pssb.2220970208

    Google Scholar 

  52. M. Panik, Growth Curve Modeling (John Wiley & Sons, Inc., 2014). doi:10.1002/9781118763971. http://dx.doi.org/10.1002/9781118763971

    Google Scholar 

  53. A. Lushchik, C. Lushchik, K. Schwartz, F. Savikhin, E. Shablonin, A. Shugai, E. Vasil’chenko, Nucl. Instrum. Methods B 277, 40 (2012). doi:10.1016/j.nimb.2011.12.051. http://linkinghub.elsevier.com/retrieve/pii/S0168583X11011700

    Google Scholar 

  54. A. Quaranta, F. Gramegna, V. Kravchuk, C. Scian, Nucl. Instrum. Methods B 266(12–13), 2723 (2008). doi:10.1016/j.nimb.2008.03.195. http://linkinghub.elsevier.com/retrieve/pii/S0168583X08003753

    Google Scholar 

  55. Y. Suzuki, H. Abe, M. Hirai, J. Phys. Soc. Jpn. 61(8), 2964 (1992). doi:10.1143/JPSJ.61.2964. http://jpsj.ipap.jp/link?JPSJ/61/2964/

    Google Scholar 

  56. R. Williams, K. Song, W. Faust, C. Leung, Phys. Rev. B 33(10), 7232 (1986). doi:10.1103/PhysRevB.33.7232. http://link.aps.org/doi/10.1103/PhysRevB.33.7232

    Google Scholar 

  57. E. Balanzat, S. Bouffard, A. Cassimi, E. Doorhyee, L. Protin, J. Grandin, J. Doualan, J. Margerie, Nucl. Instrum. Methods B 91(1–4), 134 (1994). doi:10.1016/0168-583X(94)96203-0. http://linkinghub.elsevier.com/retrieve/pii/0168583X94962030

    Google Scholar 

  58. E. Sonder, J. Phys. 34(C9), C9 (1973). doi:10.1051/jphyscol:1973979. http://www.edpsciences.org/10.1051/jphyscol:1973979

    Google Scholar 

  59. W. Soppe, J. Phys. Condens. Matter 5(22), 3519 (1993). doi:10.1088/0953-8984/5/22/005. http://stacks.iop.org/0953-8984/5/i=22/a=005?key=crossref.7674ae0c6a8d8d31fbb406ac479d2ac0

    Google Scholar 

  60. A. Dauletbekova, A. Akilbekov, M. Zdorovets, A. Vassil’eva, D. Akilbekova, Nucl. Instrum. Methods B 268(19), 3005 (2010). doi:10.1016/j.nimb.2010.05.028. http://linkinghub.elsevier.com/retrieve/pii/S0168583X10004465

    Google Scholar 

  61. K. Schwartz, M. Sorokin, A. Lushchik, C. Lushchik, E. Vasilchenko, R. Papaleo, D. de Souza, A. Volkov, K. Voss, R. Neumann, C. Trautmann, Nucl. Instrum. Methods B 266(12–13), 2736 (2008). doi:10.1016/j.nimb.2008.03.107. http://linkinghub.elsevier.com/retrieve/pii/S0168583X08003777

    Google Scholar 

  62. W. Soppe, H. Donker, A. García, Celma. J. Prij J. Nucl. Mater. 217(1–2), 1 (1994). doi:10.1016/0022-3115(94)90301-8. http://www.sciencedirect.com/science/article/pii/0022311594903018linkinghub.elsevier.com/retrieve/pii/0022311594903018

    Google Scholar 

  63. J. Smith, R. Stenstrom, J. Geol. 73(4), pp. 627 (1965). http://www.jstor.org/stable/30069385

  64. J. Long, S. Agrell, Mineral. Mag. 34, 318 (1965)

    Article  Google Scholar 

  65. R.F. Sippel, Rev. Sci. Instrum. 36(11), 1556 (1965). doi:10.1063/1.1719391. http://scitation.aip.org/content/aip/journal/rsi/36/11/10.1063/1.1719391

    Google Scholar 

  66. C. Jardin, B. Canut, S. Ramos, J. Phys. D Appl. Phys. 29(8), 2066 (1996). doi:10.1088/0022-3727/29/8/002. http://stacks.iop.org/0022-3727/29/i=8/a=002?key=crossref.f8e274fd953d7a65e4ba67e55da4d75e

    Google Scholar 

  67. K. Lee, J. Crawford, Phys. Rev. B 19(6), 3217 (1979). doi:10.1103/PhysRevB.19.3217. http://link.aps.org/doi/10.1103/PhysRevB.19.3217

    Google Scholar 

  68. D. Nelson, M. Sturge, Phys. Rev. 137(4A), A1117 (1965). doi:10.1103/PhysRev.137.A1117. http://link.aps.org/doi/10.1103/PhysRev.137.A1117

    Google Scholar 

  69. C. Guguschev, J. Gotze, M. Gobbels, Am. Mineral. 95(4), 449 (2010). doi:10.2138/am.2010.3291. http://ammin.geoscienceworld.org/cgi/doi/10.2138/am.2010.3291

    Google Scholar 

  70. H. Jang, J. Kang, Y.H. Won, S. Lee, D. Jeon, Appl. Phys. Lett. 90(7), 071908 (2007). doi:10.1063/1.2643064. http://scitation.aip.org/content/aip/journal/apl/90/7/10.1063/1.2643064

    Google Scholar 

  71. G. Stokes, Philoso. Trans. R. Soc. Lond. 142, 463 (1852). doi:10.1098/rstl.1852.0022. http://rstl.royalsocietypublishing.org/content/142/463.short

  72. H. Calvo del Castillo, A. MillĂ¡n, P. Beneitez, J. Ruvalcaba-Sil, T. CalderĂ³n, Rev. Mex. Fis. 54(2), 93 (2008). http://www.scielo.org.mx/scielo.php?pid=S0035-001X2008000200002&script=sci_arttext&tlng=pt

  73. E. Chinkov, V. Shtanko, Phys. Solid State 40(7), 1117 (1998). doi:10.1134/1.1130500. http://link.springer.com/10.1134/1.1130500

    Google Scholar 

  74. R. Williams, M. Kabler, W. Hayes, J. Stott, Phys. Rev. B 14(2), 725 (1976). http://prb.aps.org/abstract/PRB/v14/i2/p725_1

    Google Scholar 

  75. C. Görling, U. Leinhos, K. Mann, Opt. Commun. 216(4–6), 369 (2003). doi:10.1016/S0030-4018(02)02344-1. http://linkinghub.elsevier.com/retrieve/pii/S0030401802023441

    Google Scholar 

  76. M. Adair, C. Leung, K. Song, J. Phys. C Solid State Phys. 18(28), L909 (1985). doi:10.1088/0022-3719/18/28/003. http://stacks.iop.org/0022-3719/18/i=28/a=003?key=crossref.3ea92f06ef2a8a68d3d7681637f4dccf

    Google Scholar 

  77. J. Beaumont, A. Harmer, W. Hayes, J. Phys. C Solid State Phys. 5(12), 1475 (1972). doi:10.1088/0022-3719/5/12/023. http://stacks.iop.org/0022-3719/5/i=12/a=023?key=crossref.bc9dc7967b9183e662acf2bf6fb2b1db

    Google Scholar 

  78. J.M. Fritschy, W. Härtig, Immunofluorescence (John Wiley & Sons, Ltd, 2001). doi:10.1038/npg.els.0001174. http://dx.doi.org/10.1038/npg.els.0001174

  79. D. Webb, C. Brown, in Cell Imaging Techniques, Methods Mol. Biol., vol. 931, ed. by D. Taatjes, J. Roth (Humana Press, 2013), pp. 29–59. doi:10.1007/978-1-62703-056-4_2. http://dx.doi.org/10.1007/978-1-62703-056-4_2

    Google Scholar 

  80. M. MĂ¼ller, Introduction to Confocal Fluorescence Microscopy, 2nd edn. (SPIE, 2005). doi:10.1117/3.639736

    Google Scholar 

  81. J. Pallon, C. Yang, R. Utui, M. Elfman, K. Malmqvist, P. Kristiansson, K. Sjöland, Nucl. Instrum. Methods B 130(1–4), 199 (1997). doi:10.1016/S0168-583X(97)00182-1. http://linkinghub.elsevier.com/retrieve/pii/S0168583X97001821

    Google Scholar 

  82. P. Rossi, C. Di Maggio, G. Egeni, A. Galligioni, G. Gennaro, L. Giacomelli, A. Lo Giudice, M. Pegoraro, L. Pescarini, V. Rudello, E. Vittone, Nucl. Instrum. Methods B 181(1-4), 437 (2001). doi:10.1016/S0168-583X(01)00465-7. http://linkinghub.elsevier.com/retrieve/pii/S0168583X01004657

    Google Scholar 

  83. F. Watt, A. Bettiol, J. van Kan, M. Ynsa, R. Minqin, R. Rajendran, C. Huifang, S. Fwu-Shen, A. Jenner, Nucl. Instrum. Methods B 267(12–13), 2113 (2009). doi:10.1016/j.nimb.2009.03.069. http://linkinghub.elsevier.com/retrieve/pii/S0168583X09003541

    Google Scholar 

  84. R. Norarat, V. Marjomäki, X. Chen, M. Zhaohong, R. Minqin, C.B. Chen, A. Bettiol, H. Whitlow, F. Watt, Nucl. Instrum. Methods B 306, 113 (2013). doi:10.1016/j.nimb.2012.12.052. http://linkinghub.elsevier.com/retrieve/pii/S0168583X13000281

    Google Scholar 

  85. I. Johnson, M. Spence (eds.), The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th edn. (Life Technologies Corporation, 2010). https://books.google.com/books?id=djuacQAACAAJ

  86. E. Beniash, J. Simmer, H. Margolis, J. Struct. Biol. 149(2), 182 (2005). doi:10.1016/j.jsb.2004.11.001. http://www.sciencedirect.com/science/article/pii/S1047847704002138

    Google Scholar 

  87. T. Jin, Y. Ito, X. Luan, S. Dangaria, C. Walker, M. Allen, A. Kulkarni, C. Gibson, R. Braatz, X. Liao, T. Diekwisch, PLoS Biol. 7(12), e1000262 (2009). doi:10.1371/journal.pbio.1000262. http://dx.doi.org/10.1371%2Fjournal.pbio.1000262

    Google Scholar 

  88. P. Fisher, W. Wessels, A. Dietz, F. Prendergast, Microsc. Today 18, 8 (2010). doi:10.1017/S1551929510000805. http://journals.cambridge.org/article_S1551929510000805

    Google Scholar 

  89. K. Riwotzki, H. Meyssamy, A. Kornowski, M. Haase, J. Phys. Chem. B 104(13), 2824 (2000). doi:10.1021/jp993581r. http://dx.doi.org/10.1021/jp993581r

    Google Scholar 

  90. K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Angew. Chem. Int. Ed. 40(3), 573 (2001). doi:10.1002/1521-3773(20010202)40:3<573:AID-ANIE573>3.0.CO;2-0. http://dx.doi.org/10.1002/1521-3773(20010202)40:3<573:AID-ANIE573>3.0.CO;2-0

  91. A. Cuche, Y. Sonnefraud, O. Faklaris, D. Garrot, J.P. Boudou, T. Sauvage, J.F. Roch, F. Treussart, S. Huant, J. Lumin. 129(12), 1475 (2009). doi:10.1016/j.jlumin.2009.04.089. http://www.sciencedirect.com/science/article/pii/S0022231309002786. Special Issue based on The 15th International Conference on Luminescence and Optical Spectroscopy of Condensed Matter (ICL’08)

    Google Scholar 

  92. F. Röder, G. Hlawacek, S. Wintz, R. HĂ¼bner, L. Bischoff, H. Lichte, J. Lindner, J. Fassbender, R. Bali, Sci. Rep. accepted, 1 (2015). doi:10.1038/srep16786

  93. G. Hlawacek, V. Veligura, R. van Gastel, B. Poelsema, J. Vac. Sci. Technol. B 32(2) (2014). doi:10.1116/1.4863676. http://scitation.aip.org/content/avs/journal/jvstb/32/2/10.1116/1.4863676

    Google Scholar 

  94. D. Winston, J. Ferrera, L. Battistella, A. VladĂ¡r, K. Berggren, Scanning 34(2), 121 (2012). doi:10.1002/sca.20290

    Article  Google Scholar 

  95. J. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Meth. B 268(11), 1818 (2010). http://search.ebscohost.com/login.aspx?direct=true&db=inh&AN=11826951&site=ehost-live

  96. T. Chang, J. Vac. Sci. Technol. 12(6), 1271 (1975). doi:10.1116/1.568515. http://link.aip.org/link/?JVS/12/1271/1&Agg=doi

    Google Scholar 

  97. M. Parikh, J. Appl. Phys. 50(6), 4371 (1979). doi:10.1063/1.326423. http://link.aip.org/link/JAPIAU/v50/i6/p4371/s1&Agg=doi

    Google Scholar 

  98. T. Boutboul, A. Akkerman, A. Breskin, R. Chechik, J. Appl. Phys. 79(9), 6714 (1996). doi:10.1063/1.361491. http://link.aip.org/link/JAPIAU/v79/i9/p6714/s1&Agg=doi

    Google Scholar 

Download references

Acknowledgments

Support from the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Dutch Ministry of Economic Affairs is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilisa Veligura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Veligura, V., Hlawacek, G. (2016). Ionoluminescence. In: Hlawacek, G., Gölzhäuser, A. (eds) Helium Ion Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41990-9_14

Download citation

Publish with us

Policies and ethics