Skip to main content

Backscattering Spectrometry in the Helium Ion Microscope: Imaging Elemental Compositions on the nm Scale

  • Chapter
  • First Online:
Helium Ion Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The idea of using backscattered helium particles to access chemical information on the surface in a helium ion microscope came up right from the early days of this relatively young imaging technique. From the basic principles of backscattering spectrometry, ion solid interaction and particle detection it became clear rapidly that this attempt will suffer many difficulties in terms of technical realization and physical limitations. This chapter is about describing those difficulties and working out different scenarios of how to apply backscattering spectrometry to the HIM anyways. It will be shown that an actual technical realization exist enabling laterally resolved chemical analysis in a HIM with a resolution down to \(55\,\)nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sum of information on number of layers, layer thicknesses and the particular elemental composition of each layer is referred as target model.

  2. 2.

    For the actual simulation shown in Fig. 12.7 in total \(1\,\times \,10^6\) ion trajectories were evaluated. Plotting all of them into Fig. 12.8 would not allow to identify single trajectories.

  3. 3.

    Despite the surface peaks, LEIS spectra also contain a background that is caused by backscattered neutrals being re-ionized during scattering or on their way back towards the surface (see also [30]).

  4. 4.

    The factor of 2 assumes a constant sputter yield and thus a constant layer removal rate, independent on the actual areal density of the layer.

  5. 5.

    The sputter yield was extracted from TRIM simulations [8] evaluating a minimum of \(1 \times 10^{6}\) incident ions.

  6. 6.

    In the simulation a dead layer of \(15\,\mathrm{nm}\) thickness was assumed.

  7. 7.

    See also Sect. 12.5.3 for details on this sample.

References

  1. R. Ramachandra, B. Griffin, D. Joy, Ultramicroscopy 109(6), 748 (2009). doi:10.1016/j.ultramic.2009.01.013

    Google Scholar 

  2. N. Klingner, R. Heller, G. Hlawacek, J. von Borany, J. Notte, J. Huang, S. Facsko, Ultramicroscopy 162, 91 (2016). doi:10.1016/j.ultramic.2015.12.005

    Google Scholar 

  3. M. Vieluf, F. Munnik, C. Neelmeijer, M. Kosmata, S. Teichert, Thin Solid Films 520(18), 5900 (2012). doi:10.1016/j.tsf.2012.04.086

    Google Scholar 

  4. M. Kosmata, F. Munnik, D. Hanf, R. Grötzschel, S. Crocoll, W. Möller, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 337, 27 (2014). doi:10.1016/j.nimb.2014.07.018

    Google Scholar 

  5. S. Rubin, T. Passell, L. Bailey, Anal. Chem. 29(5), 736 (1957). doi:10.1021/ac60125a001

    Google Scholar 

  6. W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic Press INC, Boston, 1978)

    Google Scholar 

  7. J.F. Ziegler, J. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, 3rd edn. (Pergamon Press, New York, 1985)

    Google Scholar 

  8. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM, the stopping and range of ions in matter (SRIM Co., Chester, 2008). http://www.worldcat.org/isbn/096542071

  9. M. Mayer, in AIP Conference Proceedings (AIP, 1999), pp. 541–544. doi:10.1063/1.59188

  10. M. Mayer, J. Roth, K. Ertl, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 190(1–4), 405 (2002). doi:10.1016/S0168-583X(01)01274-5

    Google Scholar 

  11. J. Ziegler, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 136–138, 141 (1998). doi:10.1016/S0168-583X(97)00664-2

    Google Scholar 

  12. H. Paul, A. Schinner, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 227(4), 461 (2005). doi:10.1016/j.nimb.2004.10.007

    Google Scholar 

  13. Y. Wang, M. Nastasi (eds.), Handbook of Modern Ion Beam Analysis, 2nd edn. (Materials research Society, Warrendale, PA, 2009)

    Google Scholar 

  14. J. L’Ecuyer, J.A. Davies, N. Matsunami, Nucl. Instrum. Methods 160(2), 337 (1979). doi:10.1016/0029-554X(79)90612-8

    Article  ADS  Google Scholar 

  15. H.H. Andersen, F. Besenbacher, P. Loftager, W. Möller, Phys. Rev. A 21(6), 1891 (1980). doi:10.1103/PhysRevA.21.1891

    Google Scholar 

  16. L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 9(3), 344 (1985). doi:10.1016/0168-583X(85)90762-1

    Google Scholar 

  17. N.P. Barradas, C. Jeynes, R.P. Webb, Appl. Phys. Lett. 71(2), 291 (1997). doi:10.1063/1.119524

    Google Scholar 

  18. E. Szilágyi, F. Pászti, G. Amsel, Nucl. Instrum. Methods Phys. Res. B 100(1), 103 (1995). doi:10.1016/0168-583X(95)00186-7

    Google Scholar 

  19. G. Amsel, G. Battistig, A. L’Hoir, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 201(2), 325 (2003). doi:10.1016/S0168-583X(02)01740-8

    Article  ADS  Google Scholar 

  20. P. Sigmund, K.B. Winterbon, Nucl. Instrum. Methods 119(C), 541 (1974). doi:10.1016/0029-554X(74)90805-2

    Google Scholar 

  21. P. Sigmund, K.B. Winterbon, Nucl. Instrum. Methods 126(C), 317 (1975)

    Google Scholar 

  22. A. Weber, H. Mommsen, W. Sarter, A. Weller, Nucl. Instrum. Methods Phys. Res. Sect. B 198, 527 (1982)

    Article  Google Scholar 

  23. A. Weber, H. Mommsen, Nucl. Instrum. Methods Phys. Res. Sect. B 204, 559 (1983)

    Article  Google Scholar 

  24. E. Steinbauer, P. Bauer, J. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 45(1–4), 171 (1990). doi:10.1016/0168-583X(90)90810-H

    Google Scholar 

  25. P. Bauer, E. Steinbauer, J. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 79(1–4), 443 (1993). doi:10.1016/0168-583X(93)95383-G

    Google Scholar 

  26. W. Eckstein, M. Mayer, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 153(1–4), 337 (1999). doi:10.1016/S0168-583X(98)01011-8

    Article  ADS  Google Scholar 

  27. F. Schiettekatte, Nucl. Instrum. Methods Phys. Res. Sect. B 266(8), 1880 (2008). doi:10.1016/j.nimb.2007.11.075

    Article  ADS  Google Scholar 

  28. J.P. Biersack, E. Steinbauer, P. Bauer 61(1), 77 (1991). doi:10.1016/0168-583X(91)95564-T

    Google Scholar 

  29. E. Taglauer, W. Englert, W. Heiland, D.P. Jackson, Phys. Rev. Lett. 45(9), 740 (1980)

    Article  ADS  Google Scholar 

  30. D. Primetzhofer, M. Spitz, E. Taglauer, P. Bauer, Surf. Sci. 605(21–22), 1913 (2011). doi:10.1016/j.susc.2011.07.006

    Article  ADS  Google Scholar 

  31. Y. Bandurin, V. Esaulov, L. Guillemot, R. Monreal, Phys. Rev. Lett. 92(1), 017601 (2004). doi:10.1103/PhysRevLett.92.017601

  32. Y. Bandurin, V.A. Esaulov, L. Guillemot, R.C. Monreal, Phys. Status Solidi (B) Basic Res. 241(10), 2367 (2004). doi:10.1002/pssb.200404909

    Google Scholar 

  33. S. Wethekam, D. Valdés, R.C. Monreal, H. Winter. Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 1 (2008). doi:10.1103/PhysRevB.78.075423

  34. D. Primetzhofer, S.N. Markin, J.I. Juaristi, E. Taglauer, P. Bauer, Phys. Rev. Lett. 100(21), 1 (2008). doi:10.1103/PhysRevLett.100.213201

    Article  Google Scholar 

  35. D. Primetzhofer, S.N. Markin, J.I. Juaristi, E. Taglauer, P. Bauer, Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms 267(4), 624 (2009). doi:10.1016/j.nimb.2008.10.050

    Google Scholar 

  36. D. Primetzhofer, M. Spitz, S. Markin, E. Taglauer, P. Bauer, Phys. Rev. B 80(12), 125425 (2009). doi:10.1103/PhysRevB.80.125425

  37. T.M. Buck, Y.S. Chen, G.H. Wheatley, W.F.V. der Weg, Surf. Sci. 47, 244 (1975). http://www.sciencedirect.com/science/article/pii/0029554X76907953

  38. M. Draxler, R. Gruber, H.H. Brongersma, P. Bauer, Phys. Rev. Lett. 89(26), 263201 (2002). doi:10.1103/PhysRevLett.89.263201

  39. D. Primetzhofer, S.N. Markin, P. Zeppenfeld, P. Bauer, S. Pr\(\mathop {\rm u}\limits ^{\circ }\)ša, M. Kolíbal, T. Sikola. Appl. Phys. Lett. 92(1), 11929 (2008). doi:10.1063/1.2822816

    Google Scholar 

  40. T.M. Buck, G.H. Wheatley, L.C. Feldman, Surf. Sci. 35, 345 (1973). doi:10.1016/0039-6028(73)90224-0

    Google Scholar 

  41. W. Möller, W. Eckstein, Nucl. Instrum. Methods Phys. Res. Sect. B 2(1–3), 814 (1984). doi:10.1016/0168-583X(84)90321-5

    Google Scholar 

  42. S. Sijbrandij, B. Thompson, J. Notte, B.W. Ward, N.P. Economou, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 26(6), 2103 (2008). doi:10.1116/1.2993262

    Google Scholar 

  43. S. Sijbrandij, J. Notte, L. Scipioni, C. Huynh, C. Sanford, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 28(1), 73 (2010). doi:10.1116/1.3271254

    Google Scholar 

  44. H.R.J. Ter Veen, T. Kim, I.E. Wachs, H.H. Brongersma, Catal. Today 140(3), 197 (2009). doi:10.1016/j.cattod.2008.10.012

    Article  Google Scholar 

  45. H.H. Brongersma, T. Grehl, P.A. van Hal, N.C.W. Kuijpers, S.G.J. Mathijssen, E.R. Schofield, R.A.P. Smith, H.R.J. ter Veen, Vacuum 84(8), 1005 (2010). doi:10.1016/j.vacuum.2009.11.016

    Article  ADS  Google Scholar 

  46. R.A. Weller, J.H. Arps, D.D. Pedersen, M.H. Mendenhall, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 353(1994), 579 (1994). doi:10.1016/0168-9002(94)91727-2

    Google Scholar 

  47. T. Kobayashi, A. Kamoshida, H. Akiyama, K. Watanabe, T. Ohnishi, K. Takada, T.T. Suzuki, Appl. Phys. Express 7(10), 106601 (2014). doi:10.7567/APEX.7.106601

    Article  ADS  Google Scholar 

  48. C. Xu, H.D. Lee, S. Shubeita, G. Liu, Y. Xu, L. Wielunski, J. Bloch, B. Yakshinskiy, E. Garfunkel, T. Gustafsson, L.C. Feldman, in International Conference on Atomic Collisions in Solids (Conference), Debrecen (2014)

    Google Scholar 

  49. G. Andersson, H. Morgner, Surf. Sci. 405(1), 138 (1998). doi:10.1016/S0039-6028(98)00062-4

    Google Scholar 

  50. H.D. Hagstrum, Inelastic Ion-Surface Collisions (Academic New York, 1976), p. 1. doi:10.1016/B978-0-12-703550-5.50006-6

    Google Scholar 

  51. S. Abo, T. Azuma, T. Lohner, F. Wakaya, M. Takai, Nucl. Instrum. Methods Phys. Res. Sect. B 273, 266 (2012). doi:10.1016/j.nimb.2011.07.091

    Google Scholar 

  52. K. Hayashi, H. Takayama, M. Ishikawa, S. Abo, T. Lohner, M. Takai, Nucl. Instrum. Methods Phys. Res. Sect. B 219–220(1–4), 589 (2004). doi:10.1016/j.nimb.2004.01.125

    Google Scholar 

Download references

Acknowledgments

Financial support from the Bundesministerium für Wirtschaft und Energie (BMWi) (Grant 03ET7016) is acknowledged. The authors thank R.Aniol (HZDR) for manufacturing of the mechanical parts for the ToF setup and P. Bauer (JKU Linz) for providing TRBS simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heller, R., Klingner, N., Hlawacek, G. (2016). Backscattering Spectrometry in the Helium Ion Microscope: Imaging Elemental Compositions on the nm Scale. In: Hlawacek, G., Gölzhäuser, A. (eds) Helium Ion Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41990-9_12

Download citation

Publish with us

Policies and ethics