Skip to main content
Book cover

Nanowires pp 227–254Cite as

Nanowire-Enabled Energy Conversion

  • Chapter
  • First Online:
  • 2501 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Substantial recent scientific effort has been focused on the development of renewable energy sources, such as solar energy, in order to lower the carbon footprint for energy usage. Semiconductor NWs are attractive candidates for energy conversion materials since their composition, size and other factors that determine basic electronic and optical properties can be synthetically manipulated in complex ways. In this chapter, we discuss representative NW-based structures and devices for energy conversion, particularly focusing on photovoltaic, thermoelectric, and piezoelectric systems that have been used produce energy by converting light, heat, and mechanical sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Bartok, A.F. Sarofim, Fossil Fuel Combustion: A Source Book (Wiley, New York, 1991)

    Google Scholar 

  2. T.B. Johansson, Renewable Energy: Sources for Fuels and Electricity (Island press, Washington, D.C., 1993)

    Google Scholar 

  3. N.P. Dasgupta, P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion. Front. Phys. 9(3), 289–302 (2014)

    Article  Google Scholar 

  4. A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chem. Rev. 110(1), 527–546 (2010)

    Article  Google Scholar 

  5. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, 25th anniversary article: semiconductor nanowires-synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014)

    Article  Google Scholar 

  6. N.S. Lewis, Toward cost-effective solar energy use. Science 315(5813), 798–801 (2007)

    Article  ADS  Google Scholar 

  7. L.M. Fraas, L.D. Partain, Solar Cells and Their Applications (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  8. M.A. Green, Solar cells: Operating Principles, Technology, and System Applications (Prentice Hall, Englewood Cliffs, 1982)

    Google Scholar 

  9. T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park, C.M. Lieber, Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6(3), 719–733 (2013)

    Article  Google Scholar 

  10. D. Ginley, M.A. Green, R. Collins, Solar energy conversion toward 1 terawatt. MRS Bull. 33(04), 355–364 (2008)

    Article  Google Scholar 

  11. F. Dimroth, S. Kurtz, High-efficiency multijunction solar cells. MRS Bull. 32(03), 230–235 (2007)

    Article  Google Scholar 

  12. A. Polman, H.A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11(3), 174–177 (2012)

    Article  ADS  Google Scholar 

  13. A. Luque, A. Martí, A.J. Nozik, Solar cells based on quantum dots: multiple exciton generation and intermediate bands. MRS Bull. 32(03), 236–241 (2007)

    Article  Google Scholar 

  14. D. Kray, M. Hermle, S.W. Glunz, Theory and experiments on the back side reflectance of silicon wafer solar cells. Prog. Photovolt: Res. Appl. 16(1), 1–15 (2008)

    Article  Google Scholar 

  15. M.H. Kang, K. Ryu, A. Upadhyaya, A. Rohatgi, Optimization of SiN AR coating for Si solar cells and modules through quantitative assessment of optical and efficiency loss mechanism. Prog. Photovolt Res. Appl. 19(8), 983–990 (2011)

    Article  Google Scholar 

  16. B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38(1), 16–24 (2009)

    Article  Google Scholar 

  17. E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)

    Article  ADS  Google Scholar 

  18. S.T. Picraux, J. Yoo, I.H. Campbell, S.A. Dayeh, D.E. Perea, Semiconductor Nanowires for Solar Cells, in Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications, ed. by G.-C. Yi (Springer, Berlin, 2012), pp. 297–328

    Chapter  Google Scholar 

  19. P. Thony, Semiconductor nanowires for solar cells, in Semiconductor Nanowires, ed. by Q. Xiong (Elsevier, Cambridge, 2015), pp. 411–439

    Chapter  Google Scholar 

  20. Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010)

    Article  ADS  Google Scholar 

  21. E. Hecht, Optics. San Francisco (2002)

    Google Scholar 

  22. J. Zhao, M.A. Green, Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE T. Electron. Dev. 38(8), 1925–1934 (1991)

    Article  ADS  Google Scholar 

  23. J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9(1), 279–282 (2009)

    Article  ADS  Google Scholar 

  24. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2(12), 770–774 (2007)

    Article  ADS  Google Scholar 

  25. J. Zhu, Z. Yu, S. Fan, Y. Cui, Nanostructured photon management for high performance solar cells. Mater. Sci. Eng., R 70(3), 330–340 (2010)

    Article  Google Scholar 

  26. Y. Lu, A. Lal, High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 10(11), 4651–4656 (2010)

    Article  ADS  Google Scholar 

  27. E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010)

    Article  ADS  Google Scholar 

  28. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9(3), 239–244 (2010)

    ADS  Google Scholar 

  29. B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial pn junction nanorod solar cells. J. Appl. Phys. 97(11), 114302 (2005)

    Article  ADS  Google Scholar 

  30. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)

    Article  ADS  Google Scholar 

  31. T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)

    Article  ADS  Google Scholar 

  32. L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91(23), 233117 (2007)

    Article  ADS  Google Scholar 

  33. C.E. Kendrick, H.P. Yoon, Y.A. Yuwen, G.D. Barber, H. Shen, T.E. Mallouk, E.C. Dickey, T.S. Mayer, J.M. Redwing, Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett. 97(14), 143108 (2010)

    Article  ADS  Google Scholar 

  34. X. Li, J. Li, T. Chen, B.K. Tay, J. Wang, H. Yu, Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications. Nanoscale Res. Lett. 5(11), 1721–1726 (2010)

    Article  ADS  Google Scholar 

  35. T.J. Kempa, J.F. Cahoon, S.-K. Kim, R.W. Day, D.C. Bell, H.-G. Park, C.M. Lieber, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012)

    Article  ADS  Google Scholar 

  36. M.D. Kelzenberg, D.B. Turner-Evans, M.C. Putnam, S.W. Boettcher, R.M. Briggs, J.Y. Baek, N.S. Lewis, H.A. Atwater, High-performance Si microwire photovoltaics. Energy Environ. Sci. 4(3), 866–871 (2011)

    Article  Google Scholar 

  37. G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, D. Wang, Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew. Chem. Int. Ed. 50(10), 2334–2338 (2011)

    Article  Google Scholar 

  38. J. Oh, H.-C. Yuan, H.M. Branz, An 18.2 %-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 7(11), 743–748 (2012)

    Article  ADS  Google Scholar 

  39. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M.A. Seyedi, Y.-T. Lin, Y. Cao, M.L. Povinelli, P.D. Dapkus, C. Zhou, GaAs nanowire array solar cells with axial p–i–n junctions. Nano Lett. 14(6), 3293–3303 (2014)

    Article  ADS  Google Scholar 

  40. M. Beeler, C. Lim, P. Hille, J. Bleuse, J. Schörmann, M. de la Mata, J. Arbiol, M. Eickhoff, E. Monroy, Long-lived excitons in GaN/AlN nanowire heterostructures. Phys. Rev. B 91(20), 205440 (2015)

    Article  ADS  Google Scholar 

  41. J. Wu, W. Walukiewicz, K. Yu, J. Ager Iii, E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80(21), 3967–3969 (2002)

    Article  ADS  Google Scholar 

  42. J. Wu, W. Walukiewicz, K. Yu, W. Shan, J. AgerIii, E. Haller, H. Lu, W.J. Schaff, W. Metzger, S. Kurtz, Superior radiation resistance of In1 − xGaxN alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94(10), 6477–6482 (2003)

    Article  ADS  Google Scholar 

  43. O. Jani, I. Ferguson, C. Honsberg, S. Kurtz, Design and characterization of GaN∕ InGaN solar cells. Appl. Phys. Lett. 91(13), 132117 (2007)

    Article  ADS  Google Scholar 

  44. C.J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S.P. DenBaars, U.K. Mishra, High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett. 93(14), 3502 (2008)

    Article  Google Scholar 

  45. P. Kozodoy, J. Ibbetson, H. Marchand, P. Fini, S. Keller, J. Speck, S. DenBaars, U. Mishra, Electrical characterization of GaN pn junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998)

    Article  ADS  Google Scholar 

  46. F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4(10), 1975–1979 (2004)

    Article  ADS  Google Scholar 

  47. F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)

    Article  ADS  Google Scholar 

  48. S. Gradečak, F. Qian, Y. Li, H.-G. Park, C.M. Lieber, GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87(17), 173111 (2005)

    Article  ADS  Google Scholar 

  49. F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7(9), 701–706 (2008)

    Article  ADS  Google Scholar 

  50. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, C.M. Lieber, Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 6(7), 1468–1473 (2006)

    Article  ADS  Google Scholar 

  51. T. Kuykendall, P. Ulrich, S. Aloni, P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 6(12), 951–956 (2007)

    Article  ADS  Google Scholar 

  52. L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)

    Article  ADS  Google Scholar 

  53. Y. Dong, B. Tian, T.J. Kempa, C.M. Lieber, Coaxial group III − nitride nanowire photovoltaics. Nano Lett. 9(5), 2183–2187 (2009)

    Article  ADS  Google Scholar 

  54. M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001)

    Article  ADS  Google Scholar 

  55. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010)

    Article  Google Scholar 

  56. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010)

    Article  Google Scholar 

  57. F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013)

    Article  Google Scholar 

  58. Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, G. Zheng, Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013)

    Article  Google Scholar 

  59. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  60. R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M. Gunner, W. Junge, D.M. Kramer, A. Melis, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031), 805–809 (2011)

    Article  ADS  Google Scholar 

  61. Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photonics 6(8), 511–518 (2012)

    Article  ADS  Google Scholar 

  62. C. Liu, N.P. Dasgupta, P. Yang, Semiconductor nanowires for artificial photosynthesis. Chem. Mat. 26(1), 415–422 (2013)

    Article  Google Scholar 

  63. I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11(11), 4978–4984 (2011)

    Article  ADS  Google Scholar 

  64. I.S. Cho, C.H. Lee, Y. Feng, M. Logar, P.M. Rao, L. Cai, D.R. Kim, R. Sinclair, X. Zheng, Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat. Commun. 4, 1723 (2013)

    Article  ADS  Google Scholar 

  65. H.M. Chen, C.K. Chen, Y.C. Chang, C.W. Tsai, R.S. Liu, S.F. Hu, W.S. Chang, K.H. Chen, Quantum dot monolayer sensitized zno nanowire-array photoelectrodes: true efficiency for water splitting. Angew. Chem. 122(34), 6102–6105 (2010)

    Article  Google Scholar 

  66. H.M. Chen, C.K. Chen, R.S. Liu, C.C. Wu, W.S. Chang, K.H. Chen, T.S. Chan, J.F. Lee, D.P. Tsai, A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode. Adv. Energy Mater. 1(5), 742–747 (2011)

    Article  Google Scholar 

  67. W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 8(11), 11770–11777 (2014)

    Article  Google Scholar 

  68. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11(5), 2119–2125 (2011)

    Article  ADS  Google Scholar 

  69. L. Li, Y. Yu, F. Meng, Y. Tan, R.J. Hamers, S. Jin, Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12(2), 724–731 (2012)

    Article  ADS  Google Scholar 

  70. T.W. Kim, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014)

    Article  ADS  Google Scholar 

  71. M. Li, W. Luo, D. Cao, X. Zhao, Z. Li, T. Yu, Z. Zou, A Co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem. Int. Ed. 52(42), 11016–11020 (2013)

    Article  Google Scholar 

  72. G. Yuan, H. Zhao, X. Liu, Z.S. Hasanali, Y. Zou, A. Levine, D. Wang, Synthesis and photoelectrochemical study of vertically aligned silicon nanowire arrays. Angew. Chem. 121(51), 9860–9864 (2009)

    Article  Google Scholar 

  73. D. Wang, A. Pierre, M.G. Kibria, K. Cui, X. Han, K.H. Bevan, H. Guo, S. Paradis, A.-R. Hakima, Z. Mi, Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 11(6), 2353–2357 (2011)

    Article  ADS  Google Scholar 

  74. J. Sun, C. Liu, P. Yang, Surfactant-free, large-scale, solution–liquid–solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 133(48), 19306–19309 (2011)

    Article  Google Scholar 

  75. C. Liu, J. Sun, J. Tang, P. Yang, Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. Nano Lett. 12(10), 5407–5411 (2012)

    Article  ADS  Google Scholar 

  76. S.W. Boettcher, J.M. Spurgeon, M.C. Putnam, E.L. Warren, D.B. Turner-Evans, M.D. Kelzenberg, J.R. Maiolo, H.A. Atwater, N.S. Lewis, Energy-conversion properties of vapor-liquid-solid–grown silicon wire-array photocathodes. Science 327(5962), 185–187 (2010)

    Article  ADS  Google Scholar 

  77. S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D. Turner-Evans, M.D. Kelzenberg, M.G. Walter, J.R. McKone, B.S. Brunschwig, H.A. Atwater, Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133(5), 1216–1219 (2011)

    Article  Google Scholar 

  78. A. Kargar, S.J. Kim, P. Allameh, C. Choi, N. Park, H. Jeong, Y. Pak, G.Y. Jung, X. Pan, D. Wang, p-Si/SnO2/Fe2O3 core/shell/shell nanowire photocathodes for neutral pH water splitting. Adv. Funct. Mater. 25(17), 2609–2615 (2015)

    Article  Google Scholar 

  79. J. Tian, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. Int. Ed. 53(36), 9577–9581 (2014)

    Article  Google Scholar 

  80. P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. 53(47), 12855–12859 (2014)

    Article  Google Scholar 

  81. L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M.D. Scanlon, X. Hu, Y. Tang, B. Liu, H.H. Girault, A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 7(1), 387–392 (2014)

    Article  Google Scholar 

  82. T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136(39), 13925–13931 (2014)

    Article  Google Scholar 

  83. Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.B. Cai, Z. Yang, G. Zheng, Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 4(16), 1400696 (2014)

    Article  Google Scholar 

  84. Z. Peng, D. Jia, A.M. Al-Enizi, A.A. Elzatahry, G. Zheng, From water oxidation to reduction: homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 5(9), 1402031 (2015)

    Article  Google Scholar 

  85. Z. Liu, H. Wang, X.-M. Ou, C.-S. Lee, F. Li, X.-H. Zhang, A silicon/zinc 2, 9, 16, 23-tetraaminophthalocyanine coaxial core–shell nanowire array as an efficient solar hydrogen generation photocatalyst. Nanotechnology 23(17), 175401 (2012)

    Article  ADS  Google Scholar 

  86. A.P. Goodey, S.M. Eichfeld, K.-K. Lew, J.M. Redwing, T.E. Mallouk, Silicon nanowire array photoelectrochemical cells. J. Am. Chem. Soc. 129(41), 12344–12345 (2007)

    Article  Google Scholar 

  87. J.R. Maiolo, B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, H.A. Atwater, N.S. Lewis, High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 129(41), 12346–12347 (2007)

    Article  Google Scholar 

  88. J.M. Spurgeon, S.W. Boettcher, M.D. Kelzenberg, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, Flexible, polymer-supported. Si Wire Array Photoelectrodes. Adv. Mater. 22(30), 3277–3281 (2010)

    Google Scholar 

  89. K. Peng, X. Wang, S.-T. Lee, Silicon nanowire array photoelectrochemical solar cells. Appl. Phys. Lett. 92(16), 163103 (2008)

    Article  ADS  Google Scholar 

  90. D. Liu, L. Li, Y. Gao, C. Wang, J. Jiang, Y. Xiong, The nature of photocatalytic “water splitting” on silicon nanowires. Angew. Chem. Int. Ed. 54(10), 2980–2985 (2015)

    Article  Google Scholar 

  91. K.-Q. Peng, X. Wang, X.-L. Wu, S.-T. Lee, Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 9(11), 3704–3709 (2009)

    Article  ADS  Google Scholar 

  92. Q. Shu, J. Wei, K. Wang, H. Zhu, Z. Li, Y. Jia, X. Gui, N. Guo, X. Li, C. Ma, Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Nano Lett. 9(12), 4338–4342 (2009)

    Article  ADS  Google Scholar 

  93. Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, Efficient energy conversion of nanotube/nanowire-based solar cells. Chem. Commun. 46(30), 5533–5535 (2010)

    Article  Google Scholar 

  94. X. Shen, B. Sun, F. Yan, J. Zhao, F. Zhang, S. Wang, X. Zhu, S. Lee, High-performance photoelectrochemical cells from ionic liquid electrolyte in methyl-terminated silicon nanowire arrays. ACS Nano 4(10), 5869–5876 (2010)

    Article  Google Scholar 

  95. X. Wang, K.Q. Peng, X.J. Pan, X. Chen, Y. Yang, L. Li, X.M. Meng, W.J. Zhang, S.T. Lee, High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Angew. Chem. Int. Ed. 50(42), 9861–9865 (2011)

    Article  Google Scholar 

  96. A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28(3), 141–145 (1995)

    Article  Google Scholar 

  97. T.J. Meyer, Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 22(5), 163–170 (1989)

    Article  Google Scholar 

  98. D. Gust, T.A. Moore, A.L. Moore, Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42(12), 1890–1898 (2009)

    Article  Google Scholar 

  99. H.B. Gray, Powering the planet with solar fuel. Nat. Chem. 1(1), 7 (2009)

    Article  Google Scholar 

  100. J.R. Bolton, S.J. Strickler, J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495 (1985)

    Article  ADS  Google Scholar 

  101. A. Kudo, Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull. 36(01), 32–38 (2011)

    Article  Google Scholar 

  102. K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3(7), 1486–1503 (2013)

    Article  Google Scholar 

  103. C. Liu, Y.J. Hwang, H.E. Jeong, P. Yang, Light-induced charge transport within a single asymmetric nanowire. Nano Lett. 11(9), 3755–3758 (2011)

    Article  ADS  Google Scholar 

  104. C. Liu, J. Tang, H.M. Chen, B. Liu, P. Yang, A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13(6), 2989–2992 (2013)

    Article  ADS  Google Scholar 

  105. J. Barber, Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38(1), 185–196 (2009)

    Article  MathSciNet  Google Scholar 

  106. C. Liu, J.J. Gallagher, K.K. Sakimoto, E.M. Nichols, C.J. Chang, M.C. Chang, P. Yang, Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15(5), 3634–3639 (2015)

    Article  ADS  Google Scholar 

  107. G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  108. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008)

    Article  ADS  Google Scholar 

  109. R.R. Heikes, R.W. Ure, Thermoelectricity: Science and Engineering (Interscience Publishers, New York, 1961)

    Google Scholar 

  110. A. Majumdar, Thermoelectricity in semiconductor nanostructures. Science 303(5659), 777–778 (2004)

    Article  Google Scholar 

  111. Y.-M. Lin, M. Dresselhaus, Thermoelectric properties of superlattice nanowires. Phys. Rev. B 68(7), 075304 (2003)

    Article  ADS  Google Scholar 

  112. B. Hamdou, J. Kimling, A. Dorn, E. Pippel, R. Rostek, P. Woias, K. Nielsch, Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. Adv. Mater. 25(2), 239–244 (2013)

    Article  Google Scholar 

  113. W. Liang, O. Rabin, A.I. Hochbaum, M. Fardy, M. Zhang, P. Yang, Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2(5), 394–399 (2009)

    Article  Google Scholar 

  114. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2 + m: Bulk thermoelectric materials with high figure of merit. Science 303(5659), 818–821 (2004)

    Article  ADS  Google Scholar 

  115. T. Harman, P. Taylor, M. Walsh, B. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297(5590), 2229–2232 (2002)

    Article  ADS  Google Scholar 

  116. R. Venkatasubramanian, E. Siivola, T. Colpitts, O’quinn, B., thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001)

    Article  ADS  Google Scholar 

  117. L. Weber, E. Gmelin, Transport properties of silicon. Appl. Phys. A 53(2), 136–140 (1991)

    Article  ADS  Google Scholar 

  118. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003)

    Article  ADS  Google Scholar 

  119. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008)

    Article  ADS  Google Scholar 

  120. C. Herring, Theory of the thermoelectric power of semiconductors. Phys. Rev. 96(5), 1163 (1954)

    Article  ADS  Google Scholar 

  121. E.K. Lee, L. Yin, Y. Lee, J.W. Lee, S.J. Lee, J. Lee, S.N. Cha, D. Whang, G.S. Hwang, K. Hippalgaonkar, Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett. 12(6), 2918–2923 (2012)

    Article  ADS  Google Scholar 

  122. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, New York, 1996)

    Google Scholar 

  123. H.A. Sodano, D.J. Inman, G. Park, A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36(3), 197–206 (2004)

    Article  Google Scholar 

  124. T.T. Le, J. Han, A. Von Jouanne, K. Mayaram, T.S. Fiez, Piezoelectric micro-power generation interface circuits. IEEE J. Solid-St. Circ. 41(6), 1411–1420 (2006)

    Article  Google Scholar 

  125. Z.L. Wang, From nanogenerators to piezotronics—a decade-long study of ZnO nanostructures. MRS Bull. 37(09), 814–827 (2012)

    Article  Google Scholar 

  126. Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics. Mater. Today 15(12), 532–543 (2012)

    Article  Google Scholar 

  127. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  ADS  Google Scholar 

  128. Y. Qin, X. Wang, Z.L. Wang, Microfibre–nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008)

    Article  ADS  Google Scholar 

  129. R. Yang, Y. Qin, L. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4(1), 34–39 (2009)

    Article  ADS  Google Scholar 

  130. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)

    Article  ADS  Google Scholar 

  131. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 7(9), 752–758 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, A., Zheng, G., Lieber, C.M. (2016). Nanowire-Enabled Energy Conversion. In: Nanowires. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41981-7_9

Download citation

Publish with us

Policies and ethics