Skip to main content

Nanowire-Enabled Energy Storage

  • Chapter
  • First Online:
Nanowires

Part of the book series: NanoScience and Technology ((NANO))

  • 2488 Accesses

Abstract

A variety of energy storage systems are currently being explored and in some cases commercialized to meet the needs for both small and large-scale energy storage/usage. Among these systems, rechargeable batteries have been extensively investigated in the research community in efforts to make breakthroughs beyond existing commercial lithium ion systems and thereby provide enhancements to capacity, power density and other metrics that would be beneficial to ubiquitous consumer electronic devices through electric automobiles. In this chapter, the advantages of NW structures for efficient energy storage will be illustrated and discussed, including their high surface area, efficient charge transport and capability to sustain large volume expansion/contraction during charge/discharge cycles. In particular, we will introduce and discuss representative works focused on lithium ion batteries, electrochemical capacitors, and sodium ion batteries. Finally, prospects and challenges for implementing NWs for practical energy storage solutions will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Demirel, Energy: Production, Conversion, Storage, Conservation, and Coupling (Springer, London, 2012)

    Book  Google Scholar 

  2. R.H. Crabtree, Energy Production and Storage: Inorganic Chemical Strategies for a Warming World (John Wiley & Sons, Chichester, 2010)

    Google Scholar 

  3. R.-S. Liu, L. Zhang, X. Sun, H. Liu, J. Zhang, Electrochemical Technologies for Energy Storage and Conversion (John Wiley & Sons, Weinheim, 2012)

    Google Scholar 

  4. J.Z. Zhang, J. Li, Y. Li, Y. Zhao, Hydrogen Generation, Storage, and Utilization (Wiley, Hoboken, New Jersey, 2014)

    Book  Google Scholar 

  5. X. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41(23), 7909–7937 (2012)

    Article  Google Scholar 

  6. P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(16), 2930–2946 (2008)

    Article  Google Scholar 

  7. C.M. Hayner, X. Zhao, H.H. Kung, Materials for rechargeable lithium-ion batteries. Annu. Rev. Chem. Biomol. Eng. 3, 445–471 (2012)

    Article  Google Scholar 

  8. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  ADS  Google Scholar 

  9. L. Mai, X. Tian, X. Xu, L. Chang, L. Xu, Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114(23), 11828–11862 (2014)

    Article  Google Scholar 

  10. K. Ozawa, Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications (John Wiley & Sons, Weinheim, 2012)

    Google Scholar 

  11. G.-A. Nazri, G. Pistoia, Lithium Batteries: Science and Technology (Springer, New York, 2008)

    Google Scholar 

  12. Y. Wang, G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20(12), 2251–2269 (2008)

    Article  Google Scholar 

  13. H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5), 414–429 (2012)

    Article  Google Scholar 

  14. N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51(40), 9994–10024 (2012)

    Article  Google Scholar 

  15. Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 8(1), 265–270 (2008)

    Article  ADS  Google Scholar 

  16. R.A. Huggins, Lithium alloy negative electrodes. J. Power Sour. 81, 13–19 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. U. Kasavajjula, C. Wang, A.J. Appleby, Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sour. 163(2), 1003–1039 (2007)

    Article  ADS  Google Scholar 

  18. K.-Q. Peng, X. Wang, L. Li, Y. Hu, S.-T. Lee, Silicon nanowires for advanced energy conversion and storage. Nano Today 8(1), 75–97 (2013)

    Article  Google Scholar 

  19. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014)

    Article  Google Scholar 

  20. E. Peled, F. Patolsky, D. Golodnitsky, K. Freedman, G. Davidi, D. Schneier, Tissue-like silicon nanowires-based 3D anodes for high-capacity lithium ion batteries. Nano Lett. 15(6), 3907–3916 (2015)

    Article  ADS  Google Scholar 

  21. D.L. Schulz, J. Hoey, J. Smith, A. Elangovan, X. Wu, I. Akhatov, S. Payne, J. Moore, P. Boudjouk, L. Pederson, Si6H12/polymer inks for electrospinning a-Si nanowire lithium ion battery anodes. Electrochem. Solid-State Lett. 13(10), A143–A145 (2010)

    Article  Google Scholar 

  22. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1520 (2010)

    Article  ADS  Google Scholar 

  23. K. Peng, J. Jie, W. Zhang, S.-T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93(3), 033105 (2008)

    Article  ADS  Google Scholar 

  24. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, S.-T. Lee, Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 90(16), 163123 (2007)

    Article  ADS  Google Scholar 

  25. W. Xu, S.S.S. Vegunta, J.C. Flake, Surface-modified silicon nanowire anodes for lithium-ion batteries. J. Power Sour. 196(20), 8583–8589 (2011)

    Article  ADS  Google Scholar 

  26. R. Huang, X. Fan, W. Shen, J. Zhu, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 95(13), 133119 (2009)

    Article  ADS  Google Scholar 

  27. Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5(7), 7927–7930 (2012)

    Article  Google Scholar 

  28. C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4(3), 1443–1450 (2010)

    Article  Google Scholar 

  29. L.-F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9(1), 491–495 (2008)

    Article  ADS  Google Scholar 

  30. C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sour. 189(2), 1132–1140 (2009)

    Article  ADS  Google Scholar 

  31. L.-F. Cui, Y. Yang, C.-M. Hsu, Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9(9), 3370–3374 (2009)

    Article  ADS  Google Scholar 

  32. J. Xie, X. Yang, S. Zhou, D. Wang, Comparing one-and two-dimensional heteronanostructures as silicon-based lithium ion battery anode materials. ACS Nano 5(11), 9225–9231 (2011)

    Article  Google Scholar 

  33. Y. Yao, K. Huo, L. Hu, N. Liu, J.J. Cha, M.T. McDowell, P.K. Chu, Y. Cui, Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. ACS Nano 5(10), 8346–8351 (2011)

    Article  Google Scholar 

  34. K. Evanoff, J. Khan, A.A. Balandin, A. Magasinski, W.J. Ready, T.F. Fuller, G. Yushin, Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv. Mater. 24(4), 533–537 (2012)

    Article  Google Scholar 

  35. X.H. Liu, L.Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J.W. Wang, J.-H. Cho, S.A. Dayeh, S.T. Picraux, J.P. Sullivan, Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11(6), 2251–2258 (2011)

    Article  ADS  Google Scholar 

  36. L. Luo, H. Yang, P. Yan, J.J. Travis, Y. Lee, N. Liu, D. Molina Piper, S.-H. Lee, P. Zhao, S.M. George, Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery. ACS Nano 9(5), 5559–5566 (2015)

    Article  Google Scholar 

  37. S.W. Lee, M.T. McDowell, J.W. Choi, Y. Cui, Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11(7), 3034–3039 (2011)

    Article  ADS  Google Scholar 

  38. X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011)

    Article  ADS  Google Scholar 

  39. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)

    Article  Google Scholar 

  40. H.B. Wu, J.S. Chen, H.H. Hng, X. Wen Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8), 2526–2542 (2012)

    Article  ADS  Google Scholar 

  41. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012)

    Article  Google Scholar 

  42. M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)

    Article  Google Scholar 

  43. H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li-ion batteries. Adv. Mater. 21(45), 4593–4607 (2009)

    Article  Google Scholar 

  44. A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)

    Article  ADS  Google Scholar 

  45. N. Li, C.J. Patrissi, G. Che, C.R. Martin, Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 147(6), 2044–2049 (2000)

    Article  Google Scholar 

  46. A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17(7), 862–865 (2005)

    Article  Google Scholar 

  47. M. Saito, Y. Murota, M. Takagi, M. Tajima, T. Asao, H. Inoue, A. Tasaka, M. Inaba, Improvement of the reversible capacity of TiO2 (B) high potential negative electrode. J. Electrochem. Soc. 159(1), A49–A54 (2011)

    Article  Google Scholar 

  48. M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. 119(5), 764–767 (2007)

    Article  Google Scholar 

  49. D.-W. Kim, I.-S. Hwang, S.J. Kwon, H.-Y. Kang, K.-S. Park, Y.-J. Choi, K.-J. Choi, J.-G. Park, Highly conductive coaxial SnO2–In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7(10), 3041–3045 (2007)

    Article  ADS  Google Scholar 

  50. H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008)

    Article  Google Scholar 

  51. J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, L. Liao, Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 19(13), 1859–1864 (2009)

    Article  Google Scholar 

  52. I.A. Courtney, J. Dahn, Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2 BPO 6 glass. J. Electrochem. Soc. 144(9), 2943–2948 (1997)

    Article  Google Scholar 

  53. C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mat. 17(12), 3297–3301 (2005)

    Article  Google Scholar 

  54. H. Wu, M. Xu, Y. Wang, G. Zheng, Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 6(3), 167–173 (2013)

    Article  ADS  Google Scholar 

  55. S. Yang, X. Feng, S. Ivanovici, K. Müllen, Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49(45), 8408–8411 (2010)

    Article  Google Scholar 

  56. Y. Wang, G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20(12), 2251–2269 (2008)

    Article  Google Scholar 

  57. J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. J. Power Sour. 195(4), 939–954 (2010)

    Article  ADS  Google Scholar 

  58. B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries†. Chem. Mat. 22(3), 691–714 (2010)

    Article  Google Scholar 

  59. T. Ohzuku, A. Ueda, Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ion. 69(3), 201–211 (1994)

    Article  Google Scholar 

  60. F. Jiao, K.M. Shaju, P.G. Bruce, Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 44(40), 6550–6553 (2005)

    Article  Google Scholar 

  61. X. Xiao, L. Yang, H. Zhao, Z. Hu, Y. Li, Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 5(1), 27–32 (2012)

    Article  Google Scholar 

  62. N. Wu, Y. Zhang, Y. Guo, S. Liu, H. Liu, H. Wu, Flake-like LiCoO2 with exposed {010} facets as a stable cathode material for highly reversible lithium storage. ACS Appl. Mater. Interfaces (2016)

    Google Scholar 

  63. M. Thackeray, P. Johnson, L. De Picciotto, P. Bruce, J. Goodenough, Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 19(2), 179–187 (1984)

    Article  Google Scholar 

  64. Q. Liu, D. Mao, C. Chang, F. Huang, Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application. J. Power Sour. 173(1), 538–544 (2007)

    Article  ADS  Google Scholar 

  65. M.M. Thackeray, Spinel electrodes for lithium batteries. J. Am. Ceram. Soc. 82(12), 3347–3354 (1999)

    Article  Google Scholar 

  66. D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8(11), 3948–3952 (2008)

    Article  ADS  Google Scholar 

  67. H.-W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, D.K. Kim, Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10(10), 3852–3856 (2010)

    Article  ADS  Google Scholar 

  68. E. Hosono, T. Kudo, I. Honma, H. Matsuda, H. Zhou, Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9(3), 1045–1051 (2009)

    Article  ADS  Google Scholar 

  69. Y. Wang, Y. Wang, D. Jia, Z. Peng, Y. Xia, G. Zheng, All-nanowire based Li-ion full cells using homologous Mn2O3 and LiMn2O4. Nano Lett. 14(2), 1080–1084 (2014)

    Article  ADS  Google Scholar 

  70. M. Freire, N. Kosova, C. Jordy, D. Chateigner, O. Lebedev, A. Maignan, V. Pralong, A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat. Mater. 173–177 (2016)

    Google Scholar 

  71. C. Delmas, H. Cognac-Auradou, J. Cocciantelli, M. Menetrier, J. Doumerc, The Li x V2O5 system: an overview of the structure modifications induced by the lithium intercalation. Solid State Ion. 69(3–4), 257–264 (1994)

    Article  Google Scholar 

  72. L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao, Y. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 10(11), 4750–4755 (2010)

    Article  ADS  Google Scholar 

  73. C.K. Chan, H. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, Y. Cui, Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7(2), 490–495 (2007)

    Article  ADS  Google Scholar 

  74. Q. An, Q. Wei, P. Zhang, J. Sheng, K.M. Hercule, F. Lv, Q. Wang, X. Wei, L. Mai, Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small 11(22), 2654–2660 (2015)

    Article  Google Scholar 

  75. S. Lim, C.S. Yoon, J. Cho, Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem. Mat. 20(14), 4560–4564 (2008)

    Article  Google Scholar 

  76. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008)

    Article  Google Scholar 

  77. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)

    Article  ADS  Google Scholar 

  78. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 1999)

    Book  Google Scholar 

  79. Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42(7), 3127–3171 (2013)

    Article  Google Scholar 

  80. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4) (2014)

    Google Scholar 

  81. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    Article  Google Scholar 

  82. X. Wang, X. Wang, W. Huang, P. Sebastian, S. Gamboa, Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sour. 140(1), 211–215 (2005)

    Article  ADS  Google Scholar 

  83. C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, H.J. Fan, Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 4(11), 4496–4499 (2011)

    Article  Google Scholar 

  84. X.-H. Xia, J.-P. Tu, Y.-J. Mai, X.-L. Wang, C.-D. Gu, X.-B. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 21(25), 9319–9325 (2011)

    Article  Google Scholar 

  85. J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50(7), 1683–1687 (2011)

    Article  Google Scholar 

  86. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14(2), 731–736 (2014)

    Article  ADS  Google Scholar 

  87. J. Zhang, J. Jiang, H. Li, X. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 4(10), 4009–4015 (2011)

    Article  Google Scholar 

  88. H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 4(8), 729–736 (2011)

    Article  Google Scholar 

  89. Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010)

    Article  ADS  Google Scholar 

  90. V. Patake, S. Pawar, V. Shinde, T. Gujar, C. Lokhande, The growth mechanism and supercapacitor study of anodically deposited amorphous ruthenium oxide films. Curr. Appl. Phys. 10(1), 99–103 (2010)

    Article  ADS  Google Scholar 

  91. Y.-F. Ke, D.-S. Tsai, Y.-S. Huang, Electrochemical capacitors of RuO 2 nanophase grown on LiNbO3 (100) and sapphire (0001) substrates. J. Mater. Chem. 15(21), 2122–2127 (2005)

    Article  Google Scholar 

  92. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4(8), 2915–2921 (2011)

    Article  Google Scholar 

  93. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011)

    Article  Google Scholar 

  94. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012)

    Article  Google Scholar 

  95. C. Chen, C. Chen, P. Huang, F. Duan, S. Zhao, P. Li, J. Fan, W. Song, Y. Qin, NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer deposition. Nanotechnology 25(50), 504001 (2014)

    Article  Google Scholar 

  96. L. Yu, G. Zhang, C. Yuan, X.W.D. Lou, Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49(2), 137–139 (2013)

    Article  Google Scholar 

  97. H. Jiang, L. Yang, C. Li, C. Yan, P.S. Lee, J. Ma, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4(5), 1813–1819 (2011)

    Article  Google Scholar 

  98. P. Chen, H. Chen, J. Qiu, C. Zhou, Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 3(8), 594–603 (2010)

    Article  ADS  Google Scholar 

  99. Z. Chen, Y. Qin, D. Weng, Q. Xiao, Y. Peng, X. Wang, H. Li, F. Wei, Y. Lu, Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 19(21), 3420–3426 (2009)

    Article  Google Scholar 

  100. S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5(5), 6872–6879 (2012)

    Article  Google Scholar 

  101. J. Zang, X. Li, In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors. J. Mater. Chem. 21(29), 10965–10969 (2011)

    Article  Google Scholar 

  102. C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13(5), 2078–2085 (2013)

    Article  ADS  Google Scholar 

  103. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)

    Article  Google Scholar 

  104. D. Su, G. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7(12), 11218–11226 (2013)

    Article  Google Scholar 

  105. S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X. Zuo, M. Balasubramanian, V.B. Prakapenka, C.S. Johnson, T. Rajh, Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6(1), 530–538 (2012)

    Article  Google Scholar 

  106. D. Su, H.-J. Ahn, G. Wang, β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Mater. 5(11), e70 (2013)

    Article  Google Scholar 

  107. L. Feng, Z. Xuan, H. Zhao, Y. Bai, J. Guo, C.-W. Su, X. Chen, MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res. Lett. 9(1), 1–8 (2014)

    Article  ADS  Google Scholar 

  108. Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L.V. Saraf, Z. Yang, J. Liu, Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 23(28), 3155–3160 (2011)

    Article  Google Scholar 

  109. K.-T. Kim, G. Ali, K.Y. Chung, C.S. Yoon, H. Yashiro, Y.-K. Sun, J. Lu, K. Amine, S.-T. Myung, Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 14(2), 416–422 (2014)

    Article  ADS  Google Scholar 

  110. S. Yuan, X.L. Huang, D.L. Ma, H.G. Wang, F.Z. Meng, X.B. Zhang, Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2273–2279 (2014)

    Article  Google Scholar 

  111. A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, A., Zheng, G., Lieber, C.M. (2016). Nanowire-Enabled Energy Storage. In: Nanowires. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41981-7_8

Download citation

Publish with us

Policies and ethics