Skip to main content

Nanoelectronics, Circuits and Nanoprocessors

  • Chapter
  • First Online:
Book cover Nanowires

Part of the book series: NanoScience and Technology ((NANO))

Abstract

As electronic device features have been pushed into the deep sub-100-nm regime, conventional scaling strategies in the semiconductor industry have faced technological and economic challenges. Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies as well as new architectures not readily accessible or even possible within the context of the top-down driven industry and manufacturing infrastructure. This chapter presents a summary of recent advances in basic nanoelectronics devices, simple circuits and nanoprocessors assembled by semiconductor NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  2. M. Waldrop, The chips are down for Moore’s law. Nature 530(7589), 144–147 (2016)

    Article  ADS  Google Scholar 

  3. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, H.-S.P. Wong, Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001)

    Article  Google Scholar 

  4. K. Likharev, J. Greer, A. Korkin, J. Labanowski, Nano and giga challenges in microelectronics, in Nano and Giga Challenges in Microelectronics, ed. by J. Greer, A. Korkin, J. Labanowski (Elsevier, Amsterdam, 2003), pp. 27–68

    Chapter  Google Scholar 

  5. C.M. Lieber, Nanoscale science and technology: building a big future from small things. MRS Bull. 28(07), 486–491 (2003)

    Article  Google Scholar 

  6. W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006)

    Article  ADS  Google Scholar 

  7. W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6(11), 841–850 (2007)

    Article  ADS  Google Scholar 

  8. W. Lu, P. Xie, C.M. Lieber, Nanowire transistor performance limits and applications. IEEE T. Electron. Dev. 55(11), 2859–2876 (2008)

    Article  ADS  Google Scholar 

  9. C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)

    Article  Google Scholar 

  10. V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21(25–26), 2681–2702 (2009)

    Article  Google Scholar 

  11. R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mat. 24(11), 1975–1991 (2012)

    Article  Google Scholar 

  12. C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull. 32(02), 99–108 (2007)

    Article  Google Scholar 

  13. H. Yan, H.S. Choe, S. Nam, Y. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M. Lieber, Programmable nanowire circuits for nanoprocessors. Nature 470(7333), 240–244 (2011)

    Article  ADS  Google Scholar 

  14. J. Yao, H. Yan, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M. Lieber, Nanowire nanocomputer as a finite-state machine. Proc. Natl. Acad. Sci. U.S.A. 111(7), 2431–2435 (2014)

    Article  ADS  Google Scholar 

  15. W. Shim, J. Yao, C.M. Lieber, Programmable resistive-switch nanowire transistor logic circuits. Nano Lett. 14(9), 5430–5436 (2014)

    Article  ADS  Google Scholar 

  16. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2(2), 101–104 (2002)

    Article  ADS  Google Scholar 

  17. X. Duan, Nanowire thin-film transistors: a new avenue to high-performance macroelectronics. IEEE T. Electron. Dev. 55(11), 3056–3062 (2008)

    Article  ADS  Google Scholar 

  18. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83(12), 2432–2434 (2003)

    Article  ADS  Google Scholar 

  19. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84(21), 4176–4178 (2004)

    Article  ADS  Google Scholar 

  20. L. Zhang, R. Tu, H. Dai, Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors. Nano Lett. 6(12), 2785–2789 (2006)

    Article  ADS  Google Scholar 

  21. Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3(3), 343–346 (2003)

    Article  ADS  Google Scholar 

  22. H.-Y. Cha, H. Wu, M. Chandrashekhar, Y. Choi, S. Chae, G. Koley, M. Spencer, Fabrication and characterization of pre-aligned gallium nitride nanowire field-effect transistors. Nanotechnology 17(5), 1264 (2006)

    Article  ADS  Google Scholar 

  23. S.A. Dayeh, D.P. Aplin, X. Zhou, P.K. Yu, E.T. Yu, D. Wang, High electron mobility InAs nanowire field-effect transistors. Small 3(2), 326–332 (2007)

    Article  Google Scholar 

  24. T. Bryllert, L.-E. Wernersson, L. Froberg, L. Samuelson, Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electr. Device L. 27(5), 323–325 (2006)

    Article  ADS  Google Scholar 

  25. M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107(3), 659–663 (2003)

    Article  Google Scholar 

  26. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4(7), 1247–1252 (2004)

    Article  ADS  Google Scholar 

  27. J. Goldberger, D.J. Sirbuly, M. Law, P. Yang, ZnO nanowire transistors. J. Phys. Chem. B 109(1), 9–14 (2005)

    Article  Google Scholar 

  28. E.N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 7(8), 2463–2469 (2007)

    Article  ADS  Google Scholar 

  29. Q. Wan, E. Dattoli, W. Lu, Doping-dependent electrical characteristics of SnO2 nanowires. Small 4(4), 451–454 (2008)

    Article  Google Scholar 

  30. Z.L. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5(6), 540–552 (2010)

    Article  Google Scholar 

  31. A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)

    Article  ADS  Google Scholar 

  32. Y. Cui, X. Duan, J. Hu, C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104(22), 5213–5216 (2000)

    Article  Google Scholar 

  33. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)

    Article  ADS  Google Scholar 

  34. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505), 851–853 (2001)

    Article  ADS  Google Scholar 

  35. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

    Article  ADS  Google Scholar 

  36. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)

    Article  ADS  Google Scholar 

  37. X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425(6955), 274–278 (2003)

    Article  ADS  Google Scholar 

  38. G. Zheng, W. Lu, S. Jin, C.M. Lieber, Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 16(21), 1890–1893 (2004)

    Article  Google Scholar 

  39. S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, C.M. Lieber, Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4(5), 915–919 (2004)

    Article  ADS  Google Scholar 

  40. S.-M. Koo, Q. Li, M.D. Edelstein, C.A. Richter, E.M. Vogel, Enhanced channel modulation in dual-gated silicon nanowire transistors. Nano Lett. 5(12), 2519–2523 (2005)

    Article  ADS  Google Scholar 

  41. D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3(9), 1255–1259 (2003)

    Article  ADS  Google Scholar 

  42. A. Javey, S. Nam, R.S. Friedman, H. Yan, C.M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7(3), 773–777 (2007)

    Article  ADS  Google Scholar 

  43. G. Yu, C.M. Lieber, Assembly and integration of semiconductor nanowires for functional nanosystems. Pure Appl. Chem. 82(12), 2295–2314 (2010)

    Article  Google Scholar 

  44. J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013)

    Article  ADS  Google Scholar 

  45. J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Silicon vertically integrated nanowire field effect transistors. Nano Lett. 6(5), 973–977 (2006)

    Article  ADS  Google Scholar 

  46. B. Yang, K. Buddharaju, S. Teo, N. Singh, G. Lo, D. Kwong, Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electr. Device L. 29(7), 791–794 (2008)

    Article  ADS  Google Scholar 

  47. J.-E. Yang, C.-B. Jin, C.-J. Kim, M.-H. Jo, Band-gap modulation in single-crystalline si1−xGex nanowires. Nano Lett. 6(12), 2679–2684 (2006)

    Article  ADS  Google Scholar 

  48. H.-K. Seong, E.-K. Jeon, M.-H. Kim, H. Oh, J.-O. Lee, J.-J. Kim, H.-J. Choi, Interface charge induced p-type characteristics of aligned Si1−xGex nanowires. Nano Lett. 8(11), 3656–3661 (2008)

    Article  ADS  Google Scholar 

  49. M. Amato, M. Palummo, R. Rurali, S. Ossicini, Silicon-germanium nanowires: chemistry and physics in play, from basic principles to advanced applications. Chem. Rev. 114(2), 1371–1412 (2014)

    Article  Google Scholar 

  50. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430(6995), 61–65 (2004)

    Article  ADS  Google Scholar 

  51. E. Lind, A.I. Persson, L. Samuelson, L.-E. Wernersson, Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett. 6(9), 1842–1846 (2006)

    Article  ADS  Google Scholar 

  52. T.-T. Ho, Y. Wang, S. Eichfeld, K.-K. Lew, B. Liu, S.E. Mohney, J.M. Redwing, T.S. Mayer, In situ axially doped n-channel silicon nanowire field-effect transistors. Nano Lett. 8(12), 4359–4364 (2008)

    Article  ADS  Google Scholar 

  53. F. Schäffler, High-mobility Si and Ge structures. Semicond. Sci. Tech. 12(12), 1515–1549 (1997)

    Article  ADS  Google Scholar 

  54. C.G. Van de Walle, R.M. Martin, Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34(8), 5621 (1986)

    Article  ADS  Google Scholar 

  55. W. Lu, J. Xiang, B.P. Timko, Y. Wu, C.M. Lieber, One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. U.S.A. 102(29), 10046–10051 (2005)

    Article  ADS  Google Scholar 

  56. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489–493 (2006)

    Article  ADS  Google Scholar 

  57. Y. Hu, J. Xiang, G. Liang, H. Yan, C.M. Lieber, Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 8(3), 925–930 (2008)

    Article  ADS  Google Scholar 

  58. D.C. Dillen, K. Kim, E.-S. Liu, E. Tutuc, Radial modulation doping in core-shell nanowires. Nat. Nanotechnol. 9, 116–120 (2014)

    Article  ADS  Google Scholar 

  59. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, C.M. Lieber, Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 6(7), 1468–1473 (2006)

    Article  ADS  Google Scholar 

  60. X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, C.M. Lieber, InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7(10), 3214–3218 (2007)

    Article  ADS  Google Scholar 

  61. K. Tomioka, M. Yoshimura, T. Fukui, A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410), 189–192 (2012)

    Article  ADS  Google Scholar 

  62. A.W. Dey, J. Svensson, M. Ek, E. Lind, C. Thelander, L.-E. Wernersson, Combining axial and radial nanowire heterostructures: Radial Esaki diodes and tunnel field-effect transistors. Nano Lett. 13(12), 5919–5924 (2013)

    Article  ADS  Google Scholar 

  63. J.-Y. Yu, S.-W. Chung, J.R. Heath, Silicon nanowires: preparation, device fabrication, and transport properties. J. Phys. Chem. B 104(50), 11864–11870 (2000)

    Article  Google Scholar 

  64. J.-H. Ahn, H.-S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314(5806), 1754–1757 (2006)

    Article  ADS  Google Scholar 

  65. S. Nam, X. Jiang, Q. Xiong, D. Ham, C.M. Lieber, Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. U.S.A. 106(50), 21035–21038 (2009)

    Article  ADS  Google Scholar 

  66. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  ADS  Google Scholar 

  67. A.M. Ionescu, Electronic devices: nanowire transistors made easy. Nat. Nanotechnol. 5(3), 178–179 (2010)

    Article  ADS  Google Scholar 

  68. A. Konar, J. Mathew, K. Nayak, M. Bajaj, R.K. Pandey, S. Dhara, K. Murali, M.M. Deshmukh, Carrier transport in high mobility InAs nanowire junctionless transistors. Nano Lett. 15(3), 1684–1690 (2015)

    Article  ADS  Google Scholar 

  69. K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)

    Article  ADS  Google Scholar 

  70. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)

    Article  ADS  Google Scholar 

  71. T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)

    Article  ADS  Google Scholar 

  72. E. Tutuc, J. Appenzeller, M.C. Reuter, S. Guha, Realization of a linear germanium nanowire p-n junction. Nano Lett. 6(9), 2070–2074 (2006)

    Article  ADS  Google Scholar 

  73. S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov, S. Christiansen, Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9(4), 1341–1344 (2009)

    Article  ADS  Google Scholar 

  74. X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai, C.M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. U.S.A. 108(30), 12212–12216 (2011)

    Article  ADS  Google Scholar 

  75. Z. Jiang, Q. Qing, P. Xie, R. Gao, C.M. Lieber, Kinked p–n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12(3), 1711–1716 (2012)

    Article  ADS  Google Scholar 

  76. C.H. Roth, L.L. Kinney, Fundamentals of logic design, 7th edn. (Cengage Learning, Stamford, Connecticut, 2014)

    Google Scholar 

  77. W.I. Park, J.S. Kim, G.C. Yi, H.J. Lee, ZnO nanorod logic circuits. Adv. Mater. 17(11), 1393–1397 (2005)

    Article  Google Scholar 

  78. R.-M. Ma, L. Dai, H.-B. Huo, W.-J. Xu, G. Qin, High-performance logic circuits constructed on single CdS nanowires. Nano Lett. 7(11), 3300–3304 (2007)

    Article  ADS  Google Scholar 

  79. W. Wu, Y. Wei, Z.L. Wang, Strain-gated piezotronic logic nanodevices. Adv. Mater. 22(42), 4711–4715 (2010)

    Article  Google Scholar 

  80. S.R. Raza, P. JináJeon, Long single ZnO nanowire for logic and memory circuits: NOT, NAND, NOR gate, and SRAM. Nanoscale 5(10), 4181–4185 (2013)

    Article  ADS  Google Scholar 

  81. R.S. Friedman, M.C. McAlpine, D.S. Ricketts, D. Ham, C.M. Lieber, High-speed integrated nanowire circuits. Nature 434(7037), 1085 (2005)

    Article  ADS  Google Scholar 

  82. D. Kim, J. Ahn, H. Kim, K.J. Lee, T. Kim, C. Yu, R.G. Nuzzo, J.A. Rogers, Complementary logic gates and ring oscillators on plastic substrates by use of printed ribbons of single-crystalline silicon. IEEE Electr. Device L. 29(1), 73 (2008)

    Article  ADS  Google Scholar 

  83. R.-G. Huang, D. Tham, D. Wang, J.R. Heath, High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors. Nano Res. 4(10), 1005–1012 (2011)

    Article  Google Scholar 

  84. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302(5649), 1377–1379 (2003)

    Article  ADS  Google Scholar 

  85. C. Yang, Z. Zhong, C.M. Lieber, Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310(5752), 1304–1307 (2005)

    Article  ADS  Google Scholar 

  86. R. Beckman, E. Johnston-Halperin, Y. Luo, J.E. Green, J.R. Heath, Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits. Science 310(5747), 465–468 (2005)

    Article  ADS  Google Scholar 

  87. M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, E. Joselevich, Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013)

    Article  ADS  Google Scholar 

  88. A. DeHon, P. Lincoln, J.E. Savage, Stochastic assembly of sublithographic nanoscale interfaces. IEEE T. Nanotechnol. 2(3), 165–174 (2003)

    Article  ADS  Google Scholar 

  89. W.D. Brown, J.E. Brewer, Nonvolatile Semiconductor Memory Technology (IEEE, New York, 1998)

    Google Scholar 

  90. B. Keeth, R.J. Baker, B. Johnson, F. Lin, DRAM Circuit Design: Fundamental and High-Speed Topics (Wiley, Hoboken, New Jersey, 2008)

    Google Scholar 

  91. J.-S. Lee, Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J. Mater. Chem. 21(37), 14097–14112 (2011)

    Article  Google Scholar 

  92. O. Hayden, R. Agarwal, W. Lu, Semiconductor nanowire devices. Nano Today 3(5), 12–22 (2008)

    Article  Google Scholar 

  93. D. Ielmini, C. Cagli, F. Nardi, Y. Zhang, Nanowire-based resistive switching memories: devices, operation and scaling. J. Phys. D Appl. Phys. 46(7), 074006 (2013)

    Article  ADS  Google Scholar 

  94. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    Article  ADS  MATH  Google Scholar 

  95. Y. Dong, G. Yu, M.C. McAlpine, W. Lu, C.M. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8(2), 386–391 (2008)

    Article  ADS  Google Scholar 

  96. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  ADS  Google Scholar 

  97. P. Cappelletti, C. Golla, P. Olivo, E. Zanoni, Flash Memory (Kluwer Academic Publishers, New York, 1999)

    Book  Google Scholar 

  98. H. Ishiwara, M. Okuyama, Y. Arimoto, Ferroelectric Random Access Memories: Fundamentals and Applications (Springer, New York, 2004)

    Book  Google Scholar 

  99. B. Lei, C. Li, D. Zhang, Q. Zhou, K. Shung, C. Zhou, Nanowire transistors with ferroelectric gate dielectrics: enhanced performance and memory effects. Appl. Phys. Lett. 84(22), 4553–4555 (2004)

    Article  ADS  Google Scholar 

  100. L. Liao, H. Fan, B. Yan, Z. Zhang, L. Chen, B. Li, G. Xing, Z. Shen, T. Wu, X. Sun, Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. ACS Nano 3(3), 700–706 (2009)

    Article  Google Scholar 

  101. J.I. Sohn, S.S. Choi, S.M. Morris, J.S. Bendall, H.J. Coles, W.-K. Hong, G. Jo, T. Lee, M.E. Welland, Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Lett. 10(11), 4316–4320 (2010)

    Article  ADS  Google Scholar 

  102. Y.T. Lee, P.J. Jeon, K.H. Lee, R. Ha, H.J. Choi, S. Im, Ferroelectric nonvolatile nanowire memory circuit using a single ZnO nanowire and copolymer top layer. Adv. Mater. 24(22), 3020–3025 (2012)

    Article  Google Scholar 

  103. H.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010)

    Article  Google Scholar 

  104. X. Duan, Y. Huang, C.M. Lieber, Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2(5), 487–490 (2002)

    Article  ADS  Google Scholar 

  105. S.I. Kim, J.H. Lee, Y.W. Chang, S.S. Hwang, K.-H. Yoo, Reversible resistive switching behaviors in NiO nanowires. Appl. Phys. Lett. 93(3), 033503 (2008)

    Article  ADS  Google Scholar 

  106. K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J.-S. Kim, B.H. Park, Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 132(19), 6634–6635 (2010)

    Article  Google Scholar 

  107. K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J.-S. Kim, B.H. Park, Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 10(4), 1359–1363 (2010)

    Article  ADS  Google Scholar 

  108. Y.-D. Chiang, W.-Y. Chang, C.-Y. Ho, C.-Y. Chen, C.-H. Ho, S.-J. Lin, T.-B. Wu, H. He, Single-ZnO-nanowire memory. IEEE T. Electron. Dev. 58(6), 1735–1740 (2011)

    Article  ADS  Google Scholar 

  109. K. Oka, T. Yanagida, K. Nagashima, H. Tanaka, T. Kawai, Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. J. Am. Chem. Soc. 131(10), 3434–3435 (2009)

    Article  Google Scholar 

  110. L. He, Z.-M. Liao, H.-C. Wu, X.-X. Tian, D.-S. Xu, G.L. Cross, G.S. Duesberg, I. Shvets, D.-P. Yu, Memory and threshold resistance switching in Ni/NiO core–shell nanowires. Nano Lett. 11(11), 4601–4606 (2011)

    Article  ADS  Google Scholar 

  111. C. Cagli, F. Nardi, B. Harteneck, Z. Tan, Y. Zhang, D. Ielmini, Resistive-switching crossbar memory based on Ni–NiO core-shell nanowires. Small 7(20), 2899–2905 (2011)

    Article  Google Scholar 

  112. Y. Chen, G.-Y. Jung, D.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, R.S. Williams, Nanoscale molecular-switch crossbar circuits. Nanotechnology 14(4), 462 (2003)

    Article  ADS  Google Scholar 

  113. J.E. Green, J.W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B.A. Sheriff, K. Xu, Y.S. Shin, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445(7126), 414–417 (2007)

    Article  ADS  Google Scholar 

  114. Y. Sun, H. Yu, N. Singh, N. Shen, G. Lo, D. Kwong, Multibit programmable flash memory realized on vertical Si nanowire channel. IEEE Electr. Device L. 31(5), 390–392 (2010)

    Article  ADS  Google Scholar 

  115. W.-H. Chen, C.-H. Liu, Q.-L. Li, Q.-J. Sun, J. Liu, X. Gao, X. Sun, S.-D. Wang, Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure. Nanotechnology 25(7), 075201 (2014)

    Article  ADS  Google Scholar 

  116. X. Zhu, Q. Li, D.E. Ioannou, D. Gu, J.E. Bonevich, H. Baumgart, J.S. Suehle, C.A. Richter, Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells. Nanotechnology 22(25), 254020 (2011)

    Article  ADS  Google Scholar 

  117. H.A. Nilsson, C. Thelander, L.E. Fröberg, J.B. Wagner, L. Samuelson, Nanowire-based multiple quantum dot memory. Appl. Phys. Lett. 89(16), 163101 (2006)

    Article  ADS  Google Scholar 

  118. T. Shaw, S. Trolier-McKinstry, P. McIntyre, The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30(1), 263–298 (2000)

    Article  ADS  Google Scholar 

  119. A. Chung, J. Deen, J.-S. Lee, M. Meyyappan, Nanoscale memory devices. Nanotechnology 21(41), 412001 (2010)

    Article  Google Scholar 

  120. Y. Kato, Y. Kaneko, H. Tanaka, K. Kaibara, S. Koyama, K. Isogai, T. Yamada, Y. Shimada, Overview and future challenge of ferroelectric random access memory technologies. Jpn. J. Appl. Phys. 46(4S), 2157 (2007)

    Article  ADS  Google Scholar 

  121. M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6(11), 824–832 (2007)

    Article  ADS  Google Scholar 

  122. Y. Jung, S.-H. Lee, D.-K. Ko, R. Agarwal, Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc. 128(43), 14026–14027 (2006)

    Article  Google Scholar 

  123. S.-H. Lee, D.-K. Ko, Y. Jung, R. Agarwal, Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Appl. Phys. Lett. 89(22), 223116 (2006)

    Article  ADS  Google Scholar 

  124. D. Yu, J. Wu, Q. Gu, H. Park, Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128(25), 8148–8149 (2006)

    Article  Google Scholar 

  125. S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X.F. Zhang, Y. Cui, Synthesis and characterization of phase-change nanowires. Nano Lett. 6(7), 1514–1517 (2006)

    Article  ADS  Google Scholar 

  126. S.-H. Lee, Y. Jung, R. Agarwal, Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2(10), 626–630 (2007)

    Article  ADS  Google Scholar 

  127. Y. Jung, C.-Y. Yang, S.-H. Lee, R. Agarwal, Phase-change Ge-Sb nanowires: synthesis, memory switching, and phase-instability. Nano Lett. 9(5), 2103–2108 (2009)

    Article  ADS  Google Scholar 

  128. M. Lu, Arithmetic and Logic in Computer Systems (Wiley, Hoboken, New Jersey, 2005)

    Google Scholar 

  129. J.J. Sparkes, Transistor Switching and Sequential Circuits (Pergamon Press, Oxford, 1969)

    Google Scholar 

  130. H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication (Cambridge University Press, New York, 2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, A., Zheng, G., Lieber, C.M. (2016). Nanoelectronics, Circuits and Nanoprocessors. In: Nanowires. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41981-7_5

Download citation

Publish with us

Policies and ethics