Skip to main content

Hierarchical Organization in Two and Three Dimensions

  • Chapter
  • First Online:
Nanowires

Part of the book series: NanoScience and Technology ((NANO))

  • 2479 Accesses

Abstract

The rationally designed and synthesized semiconductor NWs offer as a platform material with the potential to realize unprecedented structural and functional complexity as building blocks. To utilize these building blocks for nanoscale devices through integrated systems, for example in electronics and photonics, requires controlled and scalable assembly of NWs on either rigid or flexible substrates. In this chapter, we will summarize recent advances in large-scale NW assembly and hierarchical organization with two general approaches. First, organization of pre-grown NWs onto target substrates in one or more independent steps, where distinct NW building blocks can be used in each assembly step, and second, the direct growth of aligned NWs on substrates will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-Z. Long, M. Yu, B. Sun, C.-Z. Gu, Z. Fan, Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 41(12), 4560–4580 (2012)

    Article  Google Scholar 

  2. X. Liu, Y.-Z. Long, L. Liao, X. Duan, Z. Fan, Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3), 1888–1900 (2012)

    Article  Google Scholar 

  3. J.-W. Liu, H.-W. Liang, S.-H. Yu, Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 112(8), 4770–4799 (2012)

    Article  Google Scholar 

  4. B. Su, Y. Wu, L. Jiang, The art of aligning one-dimensional (1D) nanostructures. Chem. Soc. Rev. 41(23), 7832–7856 (2012)

    Article  Google Scholar 

  5. M.C. Wang, B.D. Gates, Directed assembly of nanowires. Mater. Today 12(5), 34–43 (2009)

    Article  Google Scholar 

  6. M. Kwiat, S. Cohen, A. Pevzner, F. Patolsky, Large-scale ordered 1D-nanomaterials arrays: assembly or not? Nano Today 8, 677–694 (2013)

    Article  Google Scholar 

  7. H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  ADS  MATH  Google Scholar 

  8. G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  ADS  Google Scholar 

  9. B. Messer, J.H. Song, P. Yang, Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 122(41), 10232–10233 (2000)

    Article  Google Scholar 

  10. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001)

    Article  ADS  Google Scholar 

  11. Y. Huang, C.M. Lieber, Integrated nanoscale electronics and optoelectronics: exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem. 76(12), 2051–2068 (2004)

    Article  Google Scholar 

  12. S. Yan, L. Lu, H. Meng, N. Huang, Z. Xiao, Scalable alignment and transfer of nanowires based on oriented polymer nanofibers. Nanotechnology 21(9), 095303 (2010)

    Article  ADS  Google Scholar 

  13. W.-Z. Li, W. Wei, J.-Y. Chen, J.-X. He, S.-N. Xue, J. Zhang, X. Liu, X. Li, Y. Fu, Y.-H. Jiao, Stirring-assisted assembly of nanowires at liquid–solid interfaces. Nanotechnology 24(10), 105302 (2013)

    Article  ADS  Google Scholar 

  14. X. Zhou, Y. Zhou, J.C. Ku, C. Zhang, C.A. Mirkin, Capillary force-driven, large-area alignment of multi-segmented nanowires. ACS Nano 8(2), 1511–1516 (2014)

    Article  Google Scholar 

  15. C. Yan, T. Zhang, P.S. Lee, Flow assisted synthesis of highly ordered silica nanowire arrays. Appl. Phys. A 94(4), 763–766 (2009)

    Article  ADS  Google Scholar 

  16. F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1(4), 1711–1724 (2006)

    Article  Google Scholar 

  17. G. Roberts, Langmuir-Blodgett Films (Springer Science & Business Media, New York, 1990)

    Book  Google Scholar 

  18. P. Yang, F. Kim, Langmuir-Blodgett assembly of one-dimensional nanostructures. ChemPhysChem 3(6), 503–506 (2002)

    Article  Google Scholar 

  19. A.R. Tao, J. Huang, P. Yang, Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41(12), 1662–1673 (2008)

    Article  Google Scholar 

  20. D. Whang, S. Jin, C.M. Lieber, Large-scale hierarchical organization of nanowires for functional nanosystems. Jpn. J. Appl. Phys. 43(7S), 4465 (2004)

    Article  ADS  Google Scholar 

  21. F. Kim, S. Kwan, J. Akana, P. Yang, Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123(18), 4360–4361 (2001)

    Article  Google Scholar 

  22. S. Kwan, F. Kim, J. Akana, P. Yang, Synthesis and assembly of BaWO4 nanorods. Chem. Commun. 5, 447–448 (2001)

    Article  Google Scholar 

  23. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3(9), 1229–1233 (2003)

    Article  ADS  Google Scholar 

  24. D. Whang, S. Jin, Y. Wu, C.M. Lieber, Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3(9), 1255–1259 (2003)

    Article  ADS  Google Scholar 

  25. S. Acharya, A.B. Panda, N. Belman, S. Efrima, Y. Golan, A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique. Adv. Mater. 18(2), 210–213 (2006)

    Article  Google Scholar 

  26. J. Park, G. Shin, J.S. Ha, Controlling orientation of V2O5 nanowires within micropatterns via microcontact printing combined with the gluing Langmuir-Blodgett technique. Nanotechnology 19(39), 395303 (2008)

    Article  Google Scholar 

  27. J.-W. Liu, J.-H. Zhu, C.-L. Zhang, H.-W. Liang, S.-H. Yu, Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132(26), 8945–8952 (2010)

    Article  Google Scholar 

  28. D. Whang, S. Jin, C.M. Lieber, Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3(7), 951–954 (2003)

    Article  ADS  Google Scholar 

  29. S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, C.M. Lieber, Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4(5), 915–919 (2004)

    Article  ADS  Google Scholar 

  30. G. Yu, A. Cao, C.M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007)

    Article  ADS  Google Scholar 

  31. G. Yu, X. Li, C.M. Lieber, A. Cao, Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem. 18(7), 728–734 (2008)

    Article  Google Scholar 

  32. S. Myung, M. Lee, G.T. Kim, J.S. Ha, S. Hong, Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices. Adv. Mater. 17(19), 2361–2364 (2005)

    Article  Google Scholar 

  33. J. Kang, S. Myung, B. Kim, D. Oh, G.T. Kim, S. Hong, Massive assembly of ZnO nanowire-based integrated devices. Nanotechnology 19(9), 095303 (2008)

    Article  ADS  Google Scholar 

  34. M. Lee, J. Im, B. Lee, S. Myung, J. Kang, L. Huang, Y.-K. Kwon, S. Hong, Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. Nanotechnol. 1(1), 66–71 (2006)

    Article  ADS  Google Scholar 

  35. A.K. Salem, J. Chao, K.W. Leong, P.C. Searson, Receptor-mediated self-assembly of multi-component magnetic nanowires. Adv. Mater. 16(3), 268–271 (2004)

    Article  Google Scholar 

  36. M. Chen, P.C. Searson, The dynamics of nanowire self-assembly. Adv. Mater. 17(22), 2765–2768 (2005)

    Article  Google Scholar 

  37. J. Lee, A.A. Wang, Y. Rheem, B. Yoo, A. Mulchandani, W. Chen, N.V. Myung, DNA assisted assembly of multisegmented nanowires. Electroanalsis 19(22), 2287–2293 (2007)

    Article  Google Scholar 

  38. H.-Y. Shi, B. Hu, X.-C. Yu, R.-L. Zhao, X.-F. Ren, S.-L. Liu, J.-W. Liu, M. Feng, A.-W. Xu, S.-H. Yu, Ordering of disordered nanowires: spontaneous formation of highly aligned, ultralong Ag nanowire films at oil–water–air interface. Adv. Funct. Mater. 20(6), 958–964 (2010)

    Article  Google Scholar 

  39. J.-W. Liu, S.-Y. Zhang, H. Qi, W.-C. Wen, S.-H. Yu, A general strategy for self-assembly of nanosized building blocks on liquid/liquid interfaces. Small 8(15), 2412–2420 (2012)

    Article  ADS  Google Scholar 

  40. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399–1401 (2000)

    Article  ADS  Google Scholar 

  41. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)

    Article  ADS  Google Scholar 

  42. E.M. Freer, O. Grachev, X. Duan, S. Martin, D.P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol. 5(7), 525–530 (2010)

    Article  ADS  Google Scholar 

  43. B.D. Gates, Self-assembly: nanowires find their place. Nat. Nanotechnol. 5(7), 484–485 (2010)

    Article  ADS  Google Scholar 

  44. M. Li, R.B. Bhiladvala, T.J. Morrow, J.A. Sioss, K.-K. Lew, J.M. Redwing, C.D. Keating, T.S. Mayer, Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotechnol. 3(2), 88–92 (2008)

    Article  ADS  Google Scholar 

  45. M. Tanase, L.A. Bauer, A. Hultgren, D.M. Silevitch, L. Sun, D.H. Reich, P.C. Searson, G.J. Meyer, Magnetic alignment of fluorescent nanowires. Nano Lett. 1(3), 155–158 (2001)

    Article  ADS  Google Scholar 

  46. C.M. Hangarter, Y. Rheem, B. Yoo, E.-H. Yang, N.V. Myung, Hierarchical magnetic assembly of nanowires. Nanotechnology 18(20), 205305 (2007)

    Article  ADS  Google Scholar 

  47. M. Liu, J. Lagdani, H. Imrane, C. Pettiford, J. Lou, S. Yoon, V.G. Harris, C. Vittoria, N.X. Sun, Self-assembled magnetic nanowire arrays. Appl. Phys. Lett. 90(10), 103105 (2007)

    Article  ADS  Google Scholar 

  48. C.M. Hangarter, N.V. Myung, Magnetic alignment of nanowires. Chem. Mat. 17(6), 1320–1324 (2005)

    Article  Google Scholar 

  49. S.-W. Lee, M.-C. Jeong, J.-M. Myoung, G.-S. Chae, I.-J. Chung, Magnetic alignment of ZnO nanowires for optoelectronic device applications. Appl. Phys. Lett. 90(13), 133115 (2007)

    Article  ADS  Google Scholar 

  50. M.A. Bangar, C.M. Hangarter, B. Yoo, Y. Rheem, W. Chen, A. Mulchandani, N.V. Myung, Magnetically assembled multisegmented nanowires and their applications. Electroanal. 21(1), 61–67 (2009)

    Article  Google Scholar 

  51. Y. Sun, J.A. Rogers, Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 4(10), 1953–1959 (2004)

    Article  ADS  Google Scholar 

  52. Y. Sun, S. Kim, I. Adesida, J.A. Rogers, Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Appl. Phys. Lett. 87(8), 083501 (2005)

    Article  ADS  Google Scholar 

  53. J.-H. Ahn, H.-S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314(5806), 1754–1757 (2006)

    Article  ADS  Google Scholar 

  54. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

    Article  ADS  Google Scholar 

  55. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505), 851–853 (2001)

    Article  ADS  Google Scholar 

  56. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2(2), 101–104 (2002)

    Article  ADS  Google Scholar 

  57. M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007)

    Article  ADS  Google Scholar 

  58. C.H. Lee, D.R. Kim, X. Zheng, Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proc. Natl. Acad. Sci. U.S.A. 107(22), 9950–9955 (2010)

    Article  ADS  Google Scholar 

  59. A. Javey, S. Nam, R.S. Friedman, H. Yan, C.M. Lieber, Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7(3), 773–777 (2007)

    Article  ADS  Google Scholar 

  60. Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, A. Javey, Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008)

    Article  ADS  Google Scholar 

  61. T. Takahashi, K. Takei, J.C. Ho, Y.-L. Chueh, Z. Fan, A. Javey, Monolayer resist for patterned contact printing of aligned nanowire arrays. J. Am. Chem. Soc. 131(6), 2102–2103 (2009)

    Article  Google Scholar 

  62. G. Zhu, R. Yang, S. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  63. R. Yerushalmi, Z.A. Jacobson, J.C. Ho, Z. Fan, A. Javey, Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91(20), 203104 (2007)

    Article  ADS  Google Scholar 

  64. Z. Fan, J.C. Ho, T. Takahashi, R. Yerushalmi, K. Takei, A.C. Ford, Y.L. Chueh, A. Javey, Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21(37), 3730–3743 (2009)

    Article  Google Scholar 

  65. Y.-K. Chang, F.C.-N. Hong, The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 20(19), 195302 (2009)

    Article  ADS  Google Scholar 

  66. J. Yao, H. Yan, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013)

    Article  ADS  Google Scholar 

  67. A. Pevzner, Y. Engel, R. Elnathan, T. Ducobni, M. Ben-Ishai, K. Reddy, N. Shpaisman, A. Tsukernik, M. Oksman, F. Patolsky, Knocking down highly-ordered large-scale nanowire arrays. Nano Lett. 10(4), 1202–1208 (2010)

    Article  ADS  Google Scholar 

  68. H. Song, M.H. Lee, Combing non-epitaxially grown nanowires for large-area electronic devices. Nanotechnology 24(28), 285302 (2013)

    Article  Google Scholar 

  69. F. Xu, J.W. Durham III, B.J. Wiley, Y. Zhu, Strain-release assembly of nanowires on stretchable substrates. ACS Nano 5(2), 1556–1563 (2011)

    Article  Google Scholar 

  70. Y. Li, Y. Wu, Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J. Am. Chem. Soc. 131(16), 5851–5857 (2009)

    Article  Google Scholar 

  71. W. Yang, L. Qu, R. Zheng, Z. Liu, K.R. Ratinac, L. Shen, D. Yu, L. Yang, C. J. Barrow, S., P. Ringer, Self-assembly of gold nanowires along carbon nanotubes for ultrahigh-aspect-ratio hybrids. Chem. Mat. 23(11), 2760–2765 (2011)

    Google Scholar 

  72. H.J. Fan, P. Werner, M. Zacharias, Semiconductor nanowires: from self-organization to patterned growth. Small 2(6), 700–717 (2006)

    Article  Google Scholar 

  73. E.C. Greyson, Y. Babayan, T.W. Odom, Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv. Mater. 16(15), 1348–1352 (2004)

    Article  Google Scholar 

  74. B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, N.S. Lewis, H.A. Atwater, Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 91(10), 103110 (2007)

    Article  ADS  Google Scholar 

  75. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4(7), 1247–1252 (2004)

    Article  ADS  Google Scholar 

  76. T. Mårtensson, M. Borgström, W. Seifert, B. Ohlsson, L. Samuelson, Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology 14(12), 1255 (2003)

    Article  ADS  Google Scholar 

  77. L.E. Jensen, M.T. Björk, S. Jeppesen, A.I. Persson, B.J. Ohlsson, L. Samuelson, Role of surface diffusion in chemical beam epitaxy of InAs nanowires. Nano Lett. 4(10), 1961–1964 (2004)

    Article  ADS  Google Scholar 

  78. A. Persson, L. Fröberg, L. Samuelson, H. Linke, The fabrication of dense and uniform InAs nanowire arrays. Nanotechnology 20(22), 225304 (2009)

    Article  ADS  Google Scholar 

  79. A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Shadow nanosphere lithography: simulation and experiment. Nano Lett. 4(7), 1359–1363 (2004)

    Article  ADS  Google Scholar 

  80. H.J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias, Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J. Cryst. Growth 287(1), 34–38 (2006)

    Article  ADS  Google Scholar 

  81. X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4(3), 423–426 (2004)

    Article  ADS  Google Scholar 

  82. B. Fuhrmann, H.S. Leipner, H.-R. Hoeche, L. Schubert, P. Werner, U. Gösele, Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 5(12), 2524–2527 (2005)

    Article  ADS  Google Scholar 

  83. D. Liu, Y. Xiang, Q. Liao, J. Zhang, X. Wu, Z. Zhang, L. Liu, W. Ma, J. Shen, W. Zhou, A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays. Nanotechnology 18(40), 405303 (2007)

    Article  Google Scholar 

  84. J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, Z. Ren, Formation of super arrays of periodic nanoparticles and aligned ZnO nanorods-simulation and experiments. Nano Lett. 4(10), 2037–2040 (2004)

    Article  ADS  Google Scholar 

  85. L. Li, T.Y. Zhai, H.B. Zeng, X.S. Fang, Y. Bando, D. Golberg, Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. J. Mater. Chem. 21(1), 40–56 (2011)

    Article  Google Scholar 

  86. Y. Song, Controlled fabrication of noble metal nanomaterials via nanosphere lithography and their optical properties. In ed. by B. Cui, Recent Advances in Nanofabrication Techniques and Applications, InTech: Croatia (2011)

    Google Scholar 

  87. A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. Small 1(4), 439–444 (2005)

    Article  Google Scholar 

  88. A. Valsesia, T. Meziani, F. Bretagnol, P. Colpo, G. Ceccone, F. Rossi, Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces. J. Phys. D Appl. Phys. 40(8), 2341 (2007)

    Article  ADS  Google Scholar 

  89. Z. Wu, X. Mei, D. Kim, M. Blumin, H. Ruda, Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy. Appl. Phys. Lett. 81(27), 5177–5179 (2002)

    Article  ADS  Google Scholar 

  90. H. Chik, J. Liang, S. Cloutier, N. Kouklin, J. Xu, Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl. Phys. Lett. 84(17), 3376–3378 (2004)

    Article  ADS  Google Scholar 

  91. H.J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, M. Zacharias, Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology 16(6), 913 (2005)

    Article  ADS  Google Scholar 

  92. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996)

    Article  ADS  Google Scholar 

  93. S.Y. Chou, Nanoimprint lithography and lithographically induced self-assembly. MRS Bull. 26(7), 512–517 (2001)

    Article  Google Scholar 

  94. A.I. Hochbaum, R. Fan, R. He, P. Yang, Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5(3), 457–460 (2005)

    Article  ADS  Google Scholar 

  95. T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4(4), 699–702 (2004)

    Article  ADS  Google Scholar 

  96. B. Nikoobakht, C.A. Michaels, S.J. Stranick, M.D. Vaudin, Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 85(15), 3244–3246 (2004)

    Article  ADS  Google Scholar 

  97. D. Tsivion, M. Schvartzman, R. Popovitz-Biro, P. von Huth, E. Joselevich, Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011)

    Article  ADS  Google Scholar 

  98. D. Tsivion, M. Schvartzman, R. Popovitz-Biro, E. Joselevich, Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces. ACS Nano 6(7), 6433–6445 (2012)

    Article  Google Scholar 

  99. D. Tsivion, E. Joselevich, Guided growth of epitaxially coherent GaN nanowires on SiC. Nano Lett. 13(11), 5491–5496 (2013)

    Article  ADS  Google Scholar 

  100. M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, E. Joselevich, Self-integration of nanowires into circuits via guided growth. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013)

    Article  ADS  Google Scholar 

  101. Y. Sun, H. Cui, C. Wang, Step-edge induced ordered growth: targeting to assemble super long horizontal nanowire alignment in large-scale. Phys. Chem. Chem. Phys. 15(28), 11808–11813 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, A., Zheng, G., Lieber, C.M. (2016). Hierarchical Organization in Two and Three Dimensions. In: Nanowires. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-41981-7_4

Download citation

Publish with us

Policies and ethics