Heterologous Pathway Engineering

  • Wei NiuEmail author
  • Jiantao Guo
  • Steve Van Dien


Heterologous pathways encompass both natural and artificial biosynthetic routes. Expression of a heterologous pathway expands the molecular diversity that can be realized by the host organism. The engineering efforts often benefit from a well-established technological platform of the host. This chapter discusses recent progress and key challenges in implementing heterologous pathways. Major topics include enzyme discovery for artificial pathway assembly, methods for studying and tuning the performance of a pathway, and examples of heterologous pathway engineering.


Heterologous pathway Biosynthesis Enzyme Metabolic engineering 


  1. Alper HS (ed) (2013) Systems metabolic engineering: Methods and protocols. In: Methods in molecular biology. Springer, New YorkGoogle Scholar
  2. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102:12678–12683PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568PubMedCrossRefGoogle Scholar
  4. Andersson SG, Kurland CG (1990) Codon preferences in free-living microorganisms. Microbiol Rev 54:198–210PubMedPubMedCentralGoogle Scholar
  5. Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253–257PubMedCrossRefGoogle Scholar
  6. Arnold FH, Georgiou G (eds) (2003a) Directed enzyme evolution: screening and selection methods. In: Methods in molecular biology. Springer, New YorkGoogle Scholar
  7. Arnold FH, Georgiou G (eds) (2003b) Directed evolution library creation: methods and protocols. In: Methods in molecular biology. Springer, New YorkGoogle Scholar
  8. Ataumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808CrossRefGoogle Scholar
  9. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311PubMedCrossRefGoogle Scholar
  10. Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89PubMedCrossRefGoogle Scholar
  11. Bond-Watts BB, Bellerose RJ, Chang MC (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227PubMedCrossRefGoogle Scholar
  12. Bounton ZL, Bennet GN, Rudolph FB (1996) Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 178:3015–3024Google Scholar
  13. Boyle PM, Silver PA (2012) Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 14:223–232PubMedCrossRefGoogle Scholar
  14. Bunka DH, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4:588–596PubMedCrossRefGoogle Scholar
  15. Conrado RJ, Varner JD, DeLisa MP (2008) Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr Opin Biotechnol 19:492–499PubMedCrossRefGoogle Scholar
  16. Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnsek J, Tomsic N, Avbeij M, Gaber R, Koprivnjak T, Mori J, Glavnik V, Vovk I, Bencina M, Hodnik V, Anderluh G, Dueber JE, Jerala R, DeLisa DP (2014) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889CrossRefGoogle Scholar
  17. Corey EJ (1988) Retrosynthetic thinking-essentials and examples. Chem Soc Rev 17:111–133CrossRefGoogle Scholar
  18. Cox RSIII, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145PubMedPubMedCentralGoogle Scholar
  19. Dambach MD, Winkler WC (2009) Expanding roles for metabolite-sensing regulatory RNAs. Curr Opin Microbiol 12:161–169PubMedPubMedCentralCrossRefGoogle Scholar
  20. Daniel R (2002) Construction of environmental libraries for functional screening of enzyme activity. In: Brakmann S, Johnsson K (eds) Directed molecular evolution of proteins, Wiley-VCH,WeinheimGoogle Scholar
  21. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645PubMedPubMedCentralCrossRefGoogle Scholar
  22. Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141PubMedCrossRefGoogle Scholar
  23. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474PubMedCrossRefGoogle Scholar
  24. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359PubMedCrossRefGoogle Scholar
  25. DeLong EF (ed) (2013) Microbial metagenomics, metatranscriptomics, and metaproteomics. Methods Enzymology. Academic Press, San DiegoGoogle Scholar
  26. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686PubMedCrossRefGoogle Scholar
  27. Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2:47–58PubMedCrossRefGoogle Scholar
  28. Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195PubMedCrossRefGoogle Scholar
  29. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096PubMedCrossRefGoogle Scholar
  30. Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D- glucose. J Am Chem Soc 116:399–400CrossRefGoogle Scholar
  31. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759PubMedCrossRefGoogle Scholar
  32. Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM (2014) Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 10:731PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gibson DG, Yong L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345PubMedCrossRefGoogle Scholar
  34. Gillam EMJ, Copp JN, Ackerley DF (eds) (2014) Directed evolution library creation: methods and protocols, 2nd edn. In: Methods in molecular biology. Springer, New YorkGoogle Scholar
  35. Gowen CM, Fong SS (2010) Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 5:759–767PubMedCrossRefGoogle Scholar
  36. Güell M, Yus E, Lluch-Senar M, Serrrano L (2011) Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 12:658–669CrossRefGoogle Scholar
  37. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353PubMedCrossRefGoogle Scholar
  38. Gutman GA, Hatfield GW (1989) Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci USA 86:3699–3703PubMedPubMedCentralCrossRefGoogle Scholar
  39. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249PubMedCrossRefGoogle Scholar
  40. Ippen K, Miller JH, Scaife J, Beckwith J (1968) New controlling element in the Lac operon of E. coli. Nature 217:825–827PubMedCrossRefGoogle Scholar
  41. Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353PubMedCrossRefGoogle Scholar
  42. Ishii N et al (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597PubMedCrossRefGoogle Scholar
  43. Jakočiūnas T, Jensen MK, Keasling JD (2016) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59PubMedCrossRefGoogle Scholar
  44. Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY (2012) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198PubMedCrossRefGoogle Scholar
  45. Kang Z, Zhang C, Zhang J, Jin P, Zhang J, Du G, Chen J (2014) Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 98:3413–3424PubMedCrossRefGoogle Scholar
  46. Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng. 3, doi: 10.1186/1754-1611-3-4
  47. Kim J, Copley SD (2012) Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network. Proc Natl Acad Sci USA 109:E2856–E2864PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kim TY, Sohn SB, Kim HU, Lee SY (2008) Strategies for systems-level metabolic engineering. Biotechnol J 3:612–623PubMedCrossRefGoogle Scholar
  49. Kim IK, Roldão A, Siewers V, Nielsen J (2012) A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Res 12:228–248PubMedCrossRefGoogle Scholar
  50. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20PubMedCrossRefGoogle Scholar
  51. Kromer JO, Nielsen L, Blank LM (eds) (2014) Metabolic flux analysis: methods and protocols. In: Methods in molecular biology. Springer, New YorkGoogle Scholar
  52. Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012CrossRefGoogle Scholar
  53. Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349PubMedCrossRefGoogle Scholar
  54. Lee SY, Park JM, Kim TY (2011) Application of metabolic flux analysis in metabolic engineering. Methods Enzymol 498:67–93PubMedCrossRefGoogle Scholar
  55. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012a) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 17:536–546CrossRefGoogle Scholar
  56. Lee H, DeLoache WC, Dueber JE (2012b) Spatial organization of enzymes for metabolic engineering. Metab Eng 14:242–251PubMedCrossRefGoogle Scholar
  57. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256PubMedCrossRefGoogle Scholar
  58. Liang JC, Bloom RJ, Smolke CD (2011) Engineering biological systems with synthetic RNA molecules. Mol Cell 43:915–926PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463PubMedCrossRefGoogle Scholar
  60. Mao Q, Schunk T, Gerber B, Erni B (1995) A string of enzymes, purification and characterization of a fusion protein comprising the four subunits of the glucose phosphotransferase system of Escherichia coli. J Biol Chem 270:18295–18300PubMedCrossRefGoogle Scholar
  61. Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202PubMedCrossRefGoogle Scholar
  62. Michener JK, Thodey K, Liang JC, Smolke CD (2012) Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab Eng 14:212–222PubMedCrossRefGoogle Scholar
  63. Minshull J, Stemmer WP (1999) Protein evolution by molecular breeding. Curr Opin Chem Biol 3:284–290PubMedCrossRefGoogle Scholar
  64. Mori K, Tobimatsu T, Hara T, Toraya T (1997) Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin-dependent diol dehydratase. J Biol Chem 272:32034–32041PubMedCrossRefGoogle Scholar
  65. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459PubMedCrossRefGoogle Scholar
  67. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from the international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nassal M, Mogi T, Karnik SS, Khorana HG (1987) Structure-function studies on bacteriorhodopsin III. Total synthesis of a gene for bacterio-opsin and its expression in Escherichia coli. J Biol Chem 262:9264–9270PubMedGoogle Scholar
  69. Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998–12999PubMedCrossRefGoogle Scholar
  70. Novoa EM, de Pouplans RL (2012) Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:574–581PubMedCrossRefGoogle Scholar
  71. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367PubMedCrossRefGoogle Scholar
  72. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532PubMedCrossRefGoogle Scholar
  73. Palsson B, Zengler K (2010) The challenge of integrating multi-omic data sets. Nat Chem Biol 6:787–789PubMedCrossRefGoogle Scholar
  74. Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR (2004) Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 5:R87PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pfeifer-Sancar K, Mentz A, Rüchert C, Kalinowski J (2013) Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genom 14:888CrossRefGoogle Scholar
  76. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42PubMedCrossRefGoogle Scholar
  77. Quadri LE, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:1585–1595PubMedCrossRefGoogle Scholar
  78. Rahman SA, Cuesta SM, Furnham N, Holliday GL, Thornton JM (2014) EC-BLAST: a tool to automatically search and compare enzyme reactions. Nat Methods 11:171–174PubMedPubMedCentralCrossRefGoogle Scholar
  79. Reetz MT (2011) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed Engl 50:138–174PubMedCrossRefGoogle Scholar
  80. Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A (2005) Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed Engl 44:4192–4196PubMedCrossRefGoogle Scholar
  81. Reetz MT, Wang LW, Bocola M (2006) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45:1236–1241PubMedCrossRefGoogle Scholar
  82. Reetz MT, Prasad S, Carballeira JD, Gumulya Y, Bocola M (2010) Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. J Am Chem Soc 132:9144–9152PubMedCrossRefGoogle Scholar
  83. Reymond J-L (ed) (2006) Enzyme assays: high-throughput screening, genetic selection and fingerprinting. Wiley-VCH,WeinheimGoogle Scholar
  84. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PLoS One 6:e19230PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefGoogle Scholar
  86. Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211–233PubMedCrossRefGoogle Scholar
  87. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195PubMedCrossRefGoogle Scholar
  88. Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42PubMedCrossRefGoogle Scholar
  89. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950PubMedPubMedCentralCrossRefGoogle Scholar
  90. Schmid MB, Roth JR (1987) Gene location affects expression level in Salmonella typhimurium. J Bacteriol 169:2872–2875PubMedPubMedCentralGoogle Scholar
  91. Schmidt-Dannert C (2001) Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 40:13125–13136PubMedCrossRefGoogle Scholar
  92. Sharan SK, Thomason LC, Kunzetsove SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protocol 4:206–223CrossRefGoogle Scholar
  93. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320PubMedCrossRefGoogle Scholar
  94. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 11:2905–2915CrossRefGoogle Scholar
  95. Shimizu R, Chou K, Orita I, Suzuki Y, Nakamura S, Fukui T (2013) Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. BMC Microbiol 13:169PubMedPubMedCentralCrossRefGoogle Scholar
  96. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science. 329, 309–313Google Scholar
  97. Simon C, Daniel R (2011) Metagenomic analysis: Past and future trends. Appl Environ Microbiol 77:1153–1161PubMedCrossRefGoogle Scholar
  98. Solem C, Jensen PR (2002) Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sousa C, de Lorenzo V, Cebolla A (1997) Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology 143:2071–2078PubMedCrossRefGoogle Scholar
  100. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11PubMedCrossRefGoogle Scholar
  101. Stephanopouolos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic Press, San DiegoGoogle Scholar
  102. Tyo KE, Nevoigt E, Stephanopoulos G (2011) Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation. Methods Enzymol 497:135–155PubMedCrossRefGoogle Scholar
  103. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623PubMedCrossRefGoogle Scholar
  104. Wang Z, Gerstein M, Snyder M (2009a) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009b) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898PubMedPubMedCentralCrossRefGoogle Scholar
  106. Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, Gill RT (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28:856–862PubMedCrossRefGoogle Scholar
  107. Welch M, Villalobos A, Gustafsson C, Minshull J (2011) Designing genes for successful protein expression. Methods Enzymol 498:43–66PubMedCrossRefGoogle Scholar
  108. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206PubMedCrossRefGoogle Scholar
  109. Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci USA 104:14283–14288PubMedPubMedCentralCrossRefGoogle Scholar
  110. Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322:456–460PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wittmann C, Lee SY (eds) (2012) Systems metabolic engineering. Springer, New YorkGoogle Scholar
  112. Wodicka L, Dong H, Mittmann M, Ho M-H, Lockhart DJ (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15:1359–1367PubMedCrossRefGoogle Scholar
  113. Woolston BM, Edgar S, Stephanopouos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288PubMedCrossRefGoogle Scholar
  114. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadila J, Teisan S, Schreyer B, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452PubMedCrossRefGoogle Scholar
  115. Zamboni N, Fendt SM, Rühl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892PubMedCrossRefGoogle Scholar
  116. Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Nebraska–LincolnLincolnUSA
  2. 2.Department of ChemistryUniversity of Nebraska–LincolnLincolnUSA
  3. 3.Genomatica, Inc.San DiegoUSA

Personalised recommendations