Skip to main content

A Review of Brownian Motion Based Solely on the Langevin Equation with White Noise

  • Conference paper
  • First Online:
Mathematical Analysis, Probability and Applications – Plenary Lectures (ISAAC 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 177))

Abstract

We give a historical and mathematical review of Brownian motion based solely on the Langevin equation. We derive the main statistical properties without bringing in external and subsidiary issues, such as temperature, Focker-Planck equations, the Maxwell–Boltzmann distribution, spectral analysis, the fluctuation-dissipation theorem, among many other topics that are typically introduced in discussions of the Langevin equation. The method we use is the formal solution approach, which was the standard method devised by the founders of the field. In addition, we give some relevant historical comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, A., Cohen, L.: Random force in gravitation systems. Astrophys. J. 179, 885 (1973)

    Article  Google Scholar 

  2. Ahmad, A., Cohen, L.: Dynamical friction in gravitational systems. Astrophys. J. 188, 469 (1974)

    Google Scholar 

  3. Brown, R.: A brief account of microscopical observations made in the months of june, july, and august, 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag. n.s 4, 161–173 (1828)

    Google Scholar 

  4. Chandrasekhar, S.: A statistical theory of stellar encounters. Astrophys. J. 94, 511–525 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrasekhar, S., von Neumann, J.: The statistics of the gravitational field arising from a random distribution of stars, I, the speed of fluctuations. Astrophys. J. 95, 53–489 (1942). II, The speed or fluctuations; dynamical friction; spatial correlations. Astrophys. J. 97, 1–27 (1943)

    Google Scholar 

  6. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coffey, W.T., Kalmykov, Y.P., Waldron, T.: The Langevin Equation. World Scientific (1996)

    Google Scholar 

  8. Cohen, L., Ahmad, A.: The two-time autocorrelation function for force in bounded gravitational systems. Astrophys. J. 197, 667 (1975)

    Google Scholar 

  9. Cohen, L.: Time-frequency distributions—a review. Proc. IEEE 77, 941–981 (1989)

    Article  Google Scholar 

  10. Cohen, L.: Time-Frequency Analysis. Prentice-Hall (1995)

    Google Scholar 

  11. Cohen, L.: The history of noise. IEEE Sign. Process. Mag. 22(6), 20–45 (2005)

    Article  Google Scholar 

  12. Doob, J.L.: The brownian movement and stochastic equations. Ann. Math. 43, 351 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  13. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, (On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat). Annalen der Physik 17, 549–560 (1905)

    Article  MATH  Google Scholar 

  14. Einstein, A.: Méthode pour la détermination de valeurs statistiques d’observations concermant des grandeurs soumises à des fluctuations irrégulières (Method for the Determination of Statistical Values of Observations Regarding Quantities Subject to Irregular Fluctuations). Archives des sciences physiques et naturelles 37, 254–256 (1914)

    Google Scholar 

  15. Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6(4), 504–515 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Furth, R.: Investigations on the Theory of the Brownian Movement. Dover (1956)

    Google Scholar 

  17. Gardiner, W.: Handbook of Stochastic Methods. Springer (1983)

    Google Scholar 

  18. Galleani, L., Cohen, L.: Direct time-frequency characterization of linear systems governed by differential equations. Sign. Process. Lett. 11, 721–724 (2004)

    Article  Google Scholar 

  19. Galleani, L., Cohen, L.: Nonstationary stochastic differential equations. In: Marshall, S., Sicuranza, G. (eds.) Advances of nonlinear signal and image processing, pp. 1–13. Hindowi Publishing (2006)

    Google Scholar 

  20. Galleani, L., Cohen, L.: Nonstationary and stationary noise. In: Proceedings of the SPIE, vol. 6234, id. 623416 (2006)

    Google Scholar 

  21. Gitterman, M.: The Noisy Oscillator. World Scientific (2005)

    Google Scholar 

  22. Huang, K.: Statistical Physics. CRC Press (2001)

    Google Scholar 

  23. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 Part I, 255 (1966)

    Google Scholar 

  24. Kac, M.: Random walk and the theory of brownian motion. Am. Math. Mon. 54(7), 369–391 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  26. Langevin, P.: Sur la theorie du mouvement brownien, (On the Theory of Brownian Motion). C. R. Acad. Sci. (Paris) 146, 530–533 (1908)

    MATH  Google Scholar 

  27. MacDonald, D.K.C.: Noise and Fluctuations. Wiley (1962)

    Google Scholar 

  28. Middleton, D.: Introduction to Statistical Communication Theory. McGraw-Hill (1960)

    Google Scholar 

  29. Manoliu, A., Kittel, C.: Correlation in the Langevin theory of Brownian motion. Am. J. Phys. 47, 678–680 (1979)

    Google Scholar 

  30. O’Connell, R.F.: Fluctuations and noise: a general model with applications. Proc. SPIE 5842, 206 (2005)

    Article  Google Scholar 

  31. Perrin, J.: Les atoms, librairie felix alcan, Paris (1913) (Atoms, (trans: Hammick, D.L.). Ox Bow Press, Woodbridge, 1990)

    Google Scholar 

  32. Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill (2002)

    Google Scholar 

  33. Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 23 & 24,1–162 (1944 and 1945)

    Google Scholar 

  34. Risken, H.: The Fokker-Planck Equation. Springer (1996)

    Google Scholar 

  35. Schleich, W.P.: Quantum Optics in Phase Space. Wiley (2001)

    Google Scholar 

  36. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press (1997)

    Google Scholar 

  37. Smoluchowski, M.V.: Annalen der Physik 21, 756 (1906)

    Google Scholar 

  38. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of Brownian Motion. Phys. Rev. 36, 823–841 (1930)

    Article  MATH  Google Scholar 

  39. van Kampen, N.: Stochastic Processes in Physics and Chemistry. North Holland (1981)

    Google Scholar 

  40. van Lear Jr., G.A., Uhlenbeck, G.E.: The brownian motion of strings and elastic rods. Phys. Rev. 38, 1583–1598 (1931)

    Article  MATH  Google Scholar 

  41. Wang, M.C., Uhlenbeck, G.E.: On the theory of the Brownian Motion II. Rev. Mod. Phys. 17, 323–342 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wax, N.: Selected Papers on Noise and Stochastic Processes. Dover (1954)

    Google Scholar 

  43. Wiener, N.: Differential space. J. Math. Phys. 2, 131–174 (1923)

    Article  Google Scholar 

  44. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  Google Scholar 

  45. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cohen .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Formal Solutions

Treating the Langevin equation as an ordinary differential equation with a driving force F(t), the solution, with initial condition v(0) is

$$\begin{aligned} v(t)=e^{-\beta t}v(0)+\int _{0}^{t}e^{\beta (t^{\prime }-t)}F(t^{\prime })dt^{\prime } \end{aligned}$$
(159)

This can be verified by direct substitution. Since

$$\begin{aligned} x(t)=x(0)+\int _{0}^{t}v(t^{\prime })\,dt^{\prime } \end{aligned}$$
(160)

we have

$$\begin{aligned} x(t)&=x(0)+\int _{0}^{t}\left[ e^{-\beta t^{\prime }}v(0)+\int _{0}^{t^{\prime }}e^{\beta (t^{\prime \prime }-t^{\prime })}F(t^{\prime \prime })dt^{\prime \prime }\right] dt^{\prime }\end{aligned}$$
(161)
$$\begin{aligned}&=x(0)+\frac{v(0)}{\beta }(1-e^{-\beta t})+\int _{0}^{t}\int _{0}^{t^{\prime } }e^{\beta (t^{\prime \prime }-t^{\prime })}F(t^{\prime \prime })dt^{\prime \prime }dt^{\prime } \end{aligned}$$
(162)

But

$$\begin{aligned} \int _{0}^{t}\int _{0}^{t^{\prime }}e^{\beta (t^{\prime \prime }-t^{\prime } )}F(t^{\prime \prime })dt^{\prime \prime }dt^{\prime }&=\int _{0}^{t}e^{-\beta t^{\prime }}\int _{0}^{t^{\prime }}e^{\beta t^{\prime \prime }}F(t^{\prime \prime })dt^{\prime \prime }\,dt^{\prime }\end{aligned}$$
(163)
$$\begin{aligned}&=-\frac{1}{\beta }e^{-\beta t}\int _{0}^{t}e^{\beta s}F(t^{\prime } )dt^{\prime }+\frac{1}{\beta }\int _{0}^{t}F(t^{\prime })dt^{\prime }\end{aligned}$$
(164)
$$\begin{aligned}&=-\frac{1}{\beta }\int _{0}^{t}\left( e^{\beta (t^{\prime }-t)}-1\right) F(t^{\prime })dt^{\prime } \end{aligned}$$
(165)

Therefore

$$\begin{aligned} x(t)=x(0)+\frac{v(0)}{\beta }(1-e^{-\beta t})+\frac{1}{\beta }\int _{0} ^{t}\left( 1-e^{\beta (t^{\prime }-t)}\right) F(t^{\prime })dt^{\prime } \end{aligned}$$
(166)

Also, rewrite Eq. (159) as

$$\begin{aligned} \int _{0}^{t}e^{\beta (t^{\prime }-t)}F(t^{\prime })dt^{\prime }=v(t)-e^{-\beta t}v(0) \end{aligned}$$
(167)

and substitute it into Eq. (166) to obtain

$$\begin{aligned} x(t)=x(0)+\frac{v(0)-v(t)}{\beta }+\frac{1}{\beta }\int _{0}^{t}F(t^{\prime })dt^{\prime } \end{aligned}$$
(168)

This gives a direct relation between x and v.

In addition

$$\begin{aligned} (x(t)-x(0))\beta +(v(t)-v(0))=\int _{0}^{t}F(t^{\prime })dt^{\prime } \end{aligned}$$
(169)

and squaring gives

$$\begin{aligned} (x(t)-x(0))^{2}\beta ^{2}+(v(t)-v(0))^{2}+(x(t)-x(0))(v(t)-v(0))2\beta =\left( \int _{0}^{t}F(t^{\prime })dt^{\prime }\right) ^{2} \end{aligned}$$
(170)

and using

$$\begin{aligned} \beta (x(t)-x(0))=-(v(t)-v(0)+\int _{0}^{t}F(t^{\prime })dt^{\prime } \end{aligned}$$
(171)

gives

$$\begin{aligned} (x(t)-x(0))^{2}\beta ^{2}=(v(t)-v(0))^{2}-2(v(t)-v(0))\int _{0}^{t}F(t^{\prime })dt^{\prime }+\left( \int _{0}^{t}F(t^{\prime })dt^{\prime }\right) ^{2} \end{aligned}$$
(172)

This gives a direct relation between \(x^{2}(t)\) and \(v^{2}(t)\).

Appendix 2: Evaluation of \(\int _{0}^{t}\int _{0}^{t} e^{\beta (t^{\prime }+t^{\prime \prime })}\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime }\)

Consider the evaluation of

$$\begin{aligned} \int _{0}^{t}\int _{0}^{t}e^{\beta (t^{\prime }+t^{\prime \prime })}\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime } \end{aligned}$$
(173)

Using

$$\begin{aligned} \left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle =2D\delta (t^{\prime }-t^{\prime \prime }) \end{aligned}$$
(174)

we have

$$\begin{aligned} \int _{0}^{t}\int _{0}^{t}e^{\beta (t^{\prime }+t^{\prime \prime })}\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime \prime }dt^{\prime }=2D\int _{0}^{t}\int _{0}^{t}e^{\beta (t^{\prime }+t^{\prime \prime })} \delta (t^{\prime }-t^{\prime \prime })dt^{\prime \prime }dt^{\prime } \end{aligned}$$
(175)

The inner integral gives

$$\begin{aligned} \int _{0}^{t}e^{\beta (t^{\prime }+t^{\prime \prime })}\delta (t^{\prime } -t^{\prime \prime })dt^{\prime \prime }=\left\{ \begin{array} [c]{cc} 2De^{2\beta t^{\prime }} &{} 0<t^{\prime }<t\\ 0 &{} \text {otherwise} \end{array} \right. \end{aligned}$$
(176)

Hence

$$\begin{aligned} \int _{0}^{t}\int _{0}^{t}e^{\beta (t^{\prime }+t^{\prime \prime })}\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime }=2D\int _{0}^{t}e^{2\beta t^{\prime }}dt^{\prime }=\frac{D}{\beta }(e^{-2\beta t}-1) \end{aligned}$$
(177)

Multiplying both sides by \(e^{-2\beta t}\) we have

$$\begin{aligned} e^{-2\beta t}\int _{0}^{t}\int _{0}^{t}e^{\beta (t^{\prime }+t^{\prime \prime } )}\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime }=\frac{D}{\beta }(1-e^{-2\beta t}) \end{aligned}$$
(178)

which is Eq. (31) of the main text.

Appendix 3: Evaluation of \(\int _{0}^{t}\int _{0}^{s}e^{\beta t^{\prime }}e^{\beta t^{\prime \prime }}\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime }\)

We evaluate

$$\begin{aligned} \int _{0}^{t}\int _{0}^{s}e^{\beta t^{\prime }}e^{\beta t^{\prime \prime } }\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime } \end{aligned}$$
(179)

which enters in the valuation of \(\left\langle v(t)v(s)\right\rangle \) as per Eq. (51). We have

$$\begin{aligned} \int _{0}^{t}\int _{0}^{s}e^{\beta t^{\prime }}e^{\beta t^{\prime \prime } }\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime }&=\int _{0}^{t}\int _{0}^{s}e^{\beta t^{\prime }}e^{\beta t^{\prime \prime }}\delta (t^{\prime }-t^{\prime \prime })dt^{\prime }dt^{\prime \prime }\end{aligned}$$
(180)
$$\begin{aligned}&=2D\int _{0}^{t}e^{2\beta t^{\prime }}dt^{\prime }\qquad 0<t^{\prime }<s \end{aligned}$$
(181)

Imposing the constraint \(0<t^{\prime }<s\) on the remaining integral we have that

$$\begin{aligned} \int _{0}^{t}e^{2\beta t^{\prime }}dt^{\prime }=\left\{ \begin{array} [c]{cc} \frac{1}{2\beta }\left( e^{2\beta s}-1\right) &{} t>s\\ \frac{1}{2\beta }\left( e^{2\beta t}-1\right) &{} t<s \end{array} \right. \end{aligned}$$
(182)

Therefore

$$\begin{aligned} \int _{0}^{t}\int _{0}^{s}e^{\beta t^{\prime }}e^{\beta t^{\prime \prime } }\left\langle F(t^{\prime })F(t^{\prime \prime })\right\rangle dt^{\prime }dt^{\prime \prime }=\frac{D}{\beta }\left\{ \begin{array} [c]{cc} \left( e^{2\beta s}-1\right) &{} t>s\\ \left( e^{2\beta t}-1\right) &{} t<s \end{array} \right. \end{aligned}$$
(183)

Appendix 4: Standard Deviation of x(t)

We obtain the standard deviation of position,

$$\begin{aligned} \sigma _{x}^{2}(t)=\left\langle \left( x(t)-\left\langle x\right\rangle _{t}\right) ^{2}\right\rangle =\sigma _{x}^{2}(0)+\frac{2D}{\beta ^{2}} t+\frac{D}{\beta ^{3}}\left( 4e^{-\beta t}-3-e^{-2\beta t}\right) \end{aligned}$$
(184)

Staring with

$$\begin{aligned} x(t)=x(0)+\int _{0}^{t}v(t^{\prime })\,dt^{\prime } \end{aligned}$$
(185)

and

$$\begin{aligned} \left\langle x\right\rangle _{t}=\left\langle x\right\rangle _{0}+\frac{1}{\beta }\left\langle v\right\rangle _{0}(1-e^{-\beta t}) \end{aligned}$$
(186)

and subtracting Eq. (186) from Eq. (185) we have

$$\begin{aligned} x(t)-\left\langle x\right\rangle _{t}&=x(0)-\left\langle x\right\rangle _{0}-\frac{1}{\beta }\left\langle v\right\rangle _{0}(1-e^{-\beta t} )+x(0)+\int _{0}^{t}v(t^{\prime })\,dt^{\prime }\end{aligned}$$
(187)
$$\begin{aligned}&=\int _{0}^{t}v(t^{\prime })\,dt^{\prime }-\frac{1}{\beta }\left\langle v\right\rangle _{0}(1-e^{-\beta t}) \end{aligned}$$
(188)

Squaring and taking expectation values yields

$$\begin{aligned} \sigma _{x}^{2}(t)=\sigma _{x}^{2}(0)+\int _{0}^{t}\int _{0}^{t}\left\langle v(t^{\prime })v(t^{\prime \prime })\right\rangle \,dt^{\prime }dt^{\prime \prime }+\frac{1}{\beta ^{2}}\left\langle v\right\rangle _{0}^{2}(1-e^{-\beta t} )^{2}-\frac{2}{\beta }\left\langle v\right\rangle _{0}(1-e^{-\beta t})\int _{0}^{t}\left\langle v(t^{\prime })\right\rangle \,dt^{\prime } \end{aligned}$$
(189)

Using Eq. (24), we have that

$$\begin{aligned} \int _{0}^{t}\left\langle v(t^{\prime })\right\rangle \,dt^{\prime }=\int _{0} ^{t}\left\langle v\right\rangle _{0}e^{-\beta t^{\prime }}\,dt^{\prime } =\frac{1}{\beta }\left\langle v\right\rangle _{0}(1-e^{-\beta t}) \end{aligned}$$
(190)

Therefore

$$\begin{aligned} \sigma _{x}^{2}(t)=\sigma _{x}^{2}(0)+\int _{0}^{t}\int _{0}^{t}\left\langle v(t^{\prime })v(t^{\prime \prime })\right\rangle \,dt^{\prime }dt^{\prime \prime }-\frac{1}{\beta ^{2}}\left\langle v\right\rangle _{0}^{2}(1-e^{-\beta t})^{2} \end{aligned}$$
(191)

But we know from Eq. (55) that

$$\begin{aligned} \left\langle v(t)v(s)\right\rangle =e^{-\beta (t+s)}\left\langle v^{2} \right\rangle _{0}+\frac{D}{\beta }\left( e^{-\beta (\left| t-s\right| }-e^{-\beta (t+s)}\right) \end{aligned}$$
(192)

and therefore

$$\begin{aligned} \sigma _{x}^{2}(t)&=\sigma _{x}^{2}(0)+\left\langle v^{2}\right\rangle _{0}\int _{0}^{t}\int _{0}^{t}e^{-\beta (t^{\prime }+t^{\prime \prime })}dt^{\prime }dt^{\prime \prime }+\frac{D}{\beta }\int _{0}^{t}\int _{0}^{t}\left( e^{-\beta (\left| t^{\prime }-t^{\prime \prime }\right| }-e^{-\beta (t^{\prime }+t^{\prime \prime })}\right) \,dt^{\prime }dt^{\prime \prime }\end{aligned}$$
(193)
$$\begin{aligned}&-\frac{1}{\beta ^{2}}\left\langle v\right\rangle _{0}^{2}(1-e^{-\beta t})^{2} \end{aligned}$$
(194)

But clearly

$$\begin{aligned} \left\langle v^{2}\right\rangle _{0}\int _{0}^{t}\int _{0}^{t}e^{-\beta (t^{\prime }+t^{\prime \prime })}dt^{\prime }dt^{\prime \prime }=\frac{1}{\beta ^{2} }\left\langle v\right\rangle _{0}^{2}(1-e^{-\beta t})^{2} \end{aligned}$$
(195)

and therefore

$$\begin{aligned} \sigma _{x}^{2}(t)=\sigma _{x}^{2}(0)+\frac{D}{\beta }\int _{0}^{t}\int _{0} ^{t}\left( e^{-\beta (\left| t^{\prime }-t^{\prime \prime }\right| }-e^{-\beta (t^{\prime }+t^{\prime \prime })}\right) \,dt^{\prime }dt^{\prime \prime } \end{aligned}$$
(196)

We now evaluate the integral in Eq. (196). First consider

$$\begin{aligned} \int _{0}^{t}\left( e^{-\beta (\left| t^{\prime }-t^{\prime \prime }\right| }\right) \,dt^{\prime }&=\int _{0}^{t^{\prime \prime }}\left( e^{-\beta (t^{\prime \prime }-t^{\prime })}\right) \,dt^{\prime }+\int _{t^{\prime \prime }}^{t}\left( e^{-\beta (t^{\prime }-t^{\prime \prime })}\right) \,dt^{\prime }\end{aligned}$$
(197)
$$\begin{aligned}&=\frac{1}{\beta }e^{-\beta t^{\prime \prime }}(e^{\beta t^{\prime \prime } }-1)-e^{\beta t^{\prime \prime }}\frac{1}{\beta }(e^{-\beta t}-e^{-\beta t^{\prime \prime }})\end{aligned}$$
(198)
$$\begin{aligned}&=\frac{1}{\beta }\left( 1-e^{-\beta t^{\prime \prime }}-e^{-\beta t}e^{\beta t^{\prime \prime }}+1\right) \end{aligned}$$
(199)

or

$$\begin{aligned} \int _{0}^{t}\left( e^{-\beta (\left| t^{\prime }-t^{\prime \prime }\right| }\right) \,dt^{\prime }=\frac{1}{\beta }\left( 2-e^{-\beta t^{\prime \prime }}-e^{-\beta t}e^{\beta t^{\prime \prime }}\right) \end{aligned}$$
(200)

Integrating over \(t^{\prime \prime }\) we obtain

$$\begin{aligned} \int _{0}^{t}\frac{1}{\beta }\left( 2-e^{-\beta t^{\prime \prime }}-e^{-\beta t}e^{\beta t^{\prime \prime }}\right) dt^{\prime \prime }&=\frac{1}{\beta }\frac{1}{\beta }\left( 2t+\frac{1}{\beta }(e^{-\beta t}-1)-\frac{1}{\beta }e^{-\beta t}(e^{\beta t}-1)\right) \end{aligned}$$
(201)
$$\begin{aligned}&=\frac{1}{\beta ^{2}}\left( 2t+\frac{2}{\beta }(e^{-\beta t}-1)\right) \end{aligned}$$
(202)

Giving

$$\begin{aligned} \int _{0}^{t}\int _{0}^{t}\left( e^{-\beta (\left| t^{\prime }-t^{\prime \prime }\right| }\right) dt^{\prime }dt^{\prime \prime }=\frac{1}{\beta ^{2} }\left( 2t+\frac{2}{\beta }(e^{-\beta t}-1)\right) \end{aligned}$$
(203)

The second integral is

$$\begin{aligned} \int _{0}^{t}\int _{0}^{t}e^{-\beta (t^{\prime }+t^{\prime \prime })}\,dt^{\prime }dt^{\prime \prime }=\frac{1}{\beta ^{2}}(e^{-\beta t}-1)^{2} \end{aligned}$$
(204)

Subtracting Eq. (203) from Eq. (204) and multiplying by \(\frac{D}{\beta }\) we have

$$\begin{aligned} \frac{D}{\beta }\int _{0}^{t}\int _{0}^{t}\left( e^{-\beta (\left| t^{\prime }-t^{\prime \prime }\right| }-e^{-\beta (t^{\prime }+t^{\prime \prime } )}\right) \,dt^{\prime }dt^{\prime \prime }=\frac{D}{\beta }\left[ \frac{1}{\beta ^{2}}\left( 2t+\frac{2}{\beta }(e^{-\beta t}-1)\right) -\frac{1}{\beta ^{2}}(e^{-\beta t}-1)^{2}\right] \end{aligned}$$
(205)

which simplifies to

$$\begin{aligned} \frac{D}{\beta }\int _{0}^{t}\int _{0}^{t}\left( e^{-\beta (\left| t^{\prime }-t^{\prime \prime }\right| }-e^{-\beta (t^{\prime }+t^{\prime \prime } )}\right) \,dt^{\prime }dt^{\prime \prime }=\frac{2D}{\beta ^{2}}t+\frac{D}{\beta ^{3}}\left( 4e^{-\beta t}-3-e^{-2\beta t}\right) \end{aligned}$$
(206)

Appendix 5: Evaluation of Eq. (115)

We show Eq. (115) of the text. We have that

$$\begin{aligned}&\frac{1}{\beta ^{2}}\int _{0}^{t}\int _{0}^{t}\left( 1-e^{\beta (t^{\prime }-t)}\right) \left( 1-e^{\beta (t^{\prime \prime }-t)}\right) F(t^{\prime })F(t^{\prime \prime })dt^{\prime }dt^{\prime \prime }\end{aligned}$$
(207)
$$\begin{aligned}&=\frac{1}{\beta ^{2}}\int _{0}^{t}\int _{0}^{t}\left( 1-e^{\beta (t^{\prime }-t)}\right) \left( 1-e^{\beta (t^{\prime \prime }-t)}\right) 2D\delta (t^{\prime }-t^{\prime \prime })dt^{\prime }dt^{\prime \prime }\end{aligned}$$
(208)
$$\begin{aligned}&=\frac{2D}{\beta ^{2}}\int _{0}^{t}\left( 1-e^{\beta (t^{\prime }-t)}\right) ^{2}dt^{\prime }\end{aligned}$$
(209)
$$\begin{aligned}&=\frac{2D}{\beta ^{2}}\int _{0}^{t}\left[ 1-2e^{\beta (t^{\prime } -t)}+e^{2\beta (t^{\prime }-t)}\right] dt^{\prime }\end{aligned}$$
(210)
$$\begin{aligned}&=\frac{2D}{\beta ^{2}}\left[ t-\frac{2}{\beta }e^{\beta (t^{\prime }-t)} +\frac{1}{2\beta }e^{2\beta (t^{\prime }-t)}\right] |_{0}^{t}\end{aligned}$$
(211)
$$\begin{aligned}&=\frac{2D}{\beta ^{2}}\left[ t-\frac{2}{\beta }+\frac{1}{2\beta }+\frac{2}{\beta }e^{-\beta t}-\frac{1}{2\beta }e^{-2\beta t}\right] \end{aligned}$$
(212)

Therefore

$$\begin{aligned} \frac{1}{\beta ^{2}}\int _{0}^{t}\int _{0}^{t}\left( 1-e^{\beta (t^{\prime } -t)}\right) \left( 1-e^{\beta (t^{\prime \prime }-t)}\right) F(t^{\prime })F(t^{\prime \prime })dt^{\prime }dt^{\prime \prime }=\frac{D}{\beta ^{3}}\left[ 2\beta t-3+4e^{-\beta t}-e^{-2\beta t}\right] \end{aligned}$$
(213)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cohen, L. (2016). A Review of Brownian Motion Based Solely on the Langevin Equation with White Noise. In: Qian, T., Rodino, L. (eds) Mathematical Analysis, Probability and Applications – Plenary Lectures. ISAAC 2015. Springer Proceedings in Mathematics & Statistics, vol 177. Springer, Cham. https://doi.org/10.1007/978-3-319-41945-9_1

Download citation

Publish with us

Policies and ethics