Skip to main content

Chitosan Based Nanomaterials and Its Applications

  • Chapter
  • First Online:
Book cover Systems for Drug Delivery

Abstract

Chitosan-based nanomaterials with good biodegradability, biocompatibility, and low toxicity display immense potential as carriers for controlled delivery of various therapeutic agents. Chitosan is a linear polysaccharide composed of randomly distributed b-(1-4)-linked d-glucosamine and N-acetyl-d-glucosamine. It is one of the major cationic polymers and the second most abundant polysaccharides in nature. It is extensively used to the biomedical and the industrial fields. Particularly, chitosan has been investigated much in the field of gene therapy during the last decade for its biocompatibility and non-cytotoxicity. Nevertheless, it has a number of problems such as solubility, low transfection efficiency, and low specialty on targeted disease. To circumvent these issues, different approaches have been reported to enhance them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li LH, Deng JC, Deng HR, Liu ZL, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994–8.

    Article  CAS  Google Scholar 

  2. Tiwari AD, Mishra AK, Mishra SB, Mamba BB. Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix. Carbohydr Polym. 2013;92(2):1402–7.

    Google Scholar 

  3. Shih CM, Shieh YT, Twu YK. Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydr Polym. 2009;78(2):309–15.

    Article  CAS  Google Scholar 

  4. Fan C, Li W, Zhao S, Chen J, Li X. Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation. Mater Lett. 2008;62(20):3518–20.

    Article  CAS  Google Scholar 

  5. Wei D, Qian W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B Biointerfaces. 2008;62(1):136–42.

    Article  CAS  Google Scholar 

  6. Huang L, Zhai M, Peng J, Xu L, Li J, Wei G. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions. J Colloid Interface Sci. 2007;316(2):398–404.

    Article  CAS  Google Scholar 

  7. Ruel-Gariépy E, Chenite A, Chaput C, Guirguis S, Leroux JC. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm. 2000;203(1–2):89–98.

    Article  Google Scholar 

  8. Lee JI, Kim HS, Yoo HS. DNA nanogels composed of chitosan and Pluronic with thermo-sensitive and photo-crosslinking properties. Int J Pharm. 2009;373(1–2):93–9.

    Article  CAS  Google Scholar 

  9. Liang Y, Deng L, Chen C, Zhang J, Zhou R, Li X, Hu R, Dong A. Preparation and properties of thermoreversible hydrogels based on methoxy poly(ethylene glycol)-grafted chitosan nanoparticles for drug delivery systems. Carbohydr Polym. 2011;83(4):1828–33.

    Article  CAS  Google Scholar 

  10. Jiang J, Hua D, Tang J. One-pot synthesis of pH- and thermo-sensitive chitosan-based nanoparticles by the polymerization of acrylic acid/chitosan with macro-RAFT agent. Int J Biol Macromol. 2010;46(1):126–30.

    Article  CAS  Google Scholar 

  11. Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci. 2010;41(2):360–8.

    Article  CAS  Google Scholar 

  12. Zhou HY, Chen XG, Kong M, Liu CS, Cha DS, Kennedy JF. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym. 2008;73(2):265–73.

    Article  CAS  Google Scholar 

  13. Wang X, Strand SP, Du Y, Vårum KM. Chitosan–DNA–rectorite nanocomposites: Effect of chitosan chain length and glycosylation. Carbohydr Polym. 2010;79(3):590–6.

    Google Scholar 

  14. Zeng P, Xu Y, Zeng C, Ren H, Peng M. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. Int J Pharm. 2011;415(1–2):259–66.

    Article  CAS  Google Scholar 

  15. Klausner EA, Zhang Z, Chapman RL, Multack RF, Volin MV. Ultrapure chitosan oligomers as carriers for corneal gene transfer. Biomaterials. 2010;31(7):1814–20.

    Article  CAS  Google Scholar 

  16. Garaiova Z, Strand SP, Reitan NK, Lélu S, et al. Cellular uptake of DNA–chitosan nanoparticles: The role of clathrin- and caveolae-mediated pathways. Int J Biol Macromol. 2012;51(5):1043–51.

    Article  CAS  Google Scholar 

  17. Sajomsang W, Ruktanonchai U, Gonil P, Mayen V, Opanasopit P. Methylated N-aryl chitosan derivative/DNA complex nanoparticles for gene delivery: Synthesis and structure–activity relationships. Carbohydr Polym. 2009;78(4):743–52.

    Article  CAS  Google Scholar 

  18. Zhou X, Zhang X, Yu X, et al. The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. Biomaterials. 2008;29(1):111–7.

    Article  CAS  Google Scholar 

  19. Lavertu M, Méthot S, Tran-Khanh N, Buschmann MD. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials. 2006;27(27):4815–24.

    Article  CAS  Google Scholar 

  20. Peng SF, Yang MJ, Su CJ, Chen HL, Lee PW, Wei MC, Sung HW. Effects of incorporation of poly(γ-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials. 2009;30(9):1797–808.

    Article  CAS  Google Scholar 

  21. Darras V, Nelea M, Winnik FM, Buschmann MD. Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles. Carbohydr Polym. 2010;80(4):1137–46.

    Google Scholar 

  22. Mohammadi Z, Dorkoosh FA, Hosseinkhani S, Gilani K, Amini T, Najafabadi AR, Tehrani MR. In vivo transfection study of chitosan-DNA-FAP-B nanoparticles as a new non viral vector for gene delivery to the lung. Int J Pharm. 2011;421(1):183–8.

    Article  CAS  Google Scholar 

  23. Li XW, Lee DKL, Chan ASC, Alpar HO. Sustained expression in mammalian cells with DNA complexed with chitosan nanoparticles. Biochim Biophys Acta. 2003;1630(1):7–18.

    Article  CAS  Google Scholar 

  24. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm. 2004;57(1):1–8.

    Article  CAS  Google Scholar 

  25. Chellat F, Grandjean-Laquerriere A, Naour RL, Fernandes J, Yahia LH, Guenounou M, Laurent-Maquin D. Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials. 2005;26(9):961–70.

    Article  CAS  Google Scholar 

  26. Borges O, Cordeiro-da-Silva A, Tavares J, Santarém N, Sousa A, Borchard G, Junginger HE. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm. 2008;69(2):405–16.

    Google Scholar 

  27. Corsi K, Chellat F, Yahia L, Fernandes JC. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials. 2003;24(7):1255–64.

    Article  CAS  Google Scholar 

  28. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomed Nanotech Biol Med. 2007;3(3):173–83.

    Article  CAS  Google Scholar 

  29. Chew JL, Wolfowicz CB, Mao HQ, Leong KW, Chua KY. Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice. Vaccine. 2003;21(21–22):2720–9.

    Article  CAS  Google Scholar 

  30. Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N. Chitosan conjugated DNA nanoparticles in gene therapy review article. Carbohydr Polym. 2010;79:1.

    Article  CAS  Google Scholar 

  31. Mao HQ, Roy K, Troung VL, Janes KA, Lin KY, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70(3):399–421.

    Article  CAS  Google Scholar 

  32. Bivas-Benita M, Meijgaarden KE, Franken KMC, Junginger HE, Borchard G, Tom H, Ottenhoff M, Geluk A. Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine. 2004;22(13–14):1609–15.

    Article  CAS  Google Scholar 

  33. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Julio C. Fernandes Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials. 2006;27(9):2060–5.

    Article  CAS  Google Scholar 

  34. Kadiyala I, Loo Y, Roy K, Rice J, Leong KW. Transport of chitosan–DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes. Eur J Pharm Sci. 2010;39(1–3):103–9.

    Article  CAS  Google Scholar 

  35. Zhao K, Shi X, Zhao Y, Wei H, Sun Q, Huang T, Zhang X, Wang Y. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine. 2011;29(47):8549–56.

    Article  CAS  Google Scholar 

  36. Mohammadi Z, Abolhassani M, Dorkoosh FA, Hosseinkhani S, Gilani K, Amini T, et al. Preparation and evaluation of chitosan–DNA–FAP-B nanoparticles as a novel non-viral vector for gene delivery to the lung epithelial cells. Int J Pharm. 2011;409(1–2):307–13.

    Article  CAS  Google Scholar 

  37. Slütter B, Jiskoot W. Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC)nanoparticles for nasal vaccination. J Control Release. 2010;148(1):117–21.

    Article  CAS  Google Scholar 

  38. Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, et al. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci. 2007;32(7):726–53.

    Article  CAS  Google Scholar 

  39. Yuan X, Yang X, Cai D, Mao D, Wu J, Zong L, Liu J. Intranasal immunization with chitosan/pCETP nanoparticles inhibits atherosclerosis in a rabbit model of atherosclerosis. Vaccine. 2008;26(29–30):3727–34.

    Google Scholar 

  40. Hu FQ, Zhao MD, Yuan H, You J, Du YZ, Zeng S. A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: Properties and in vitro transfection studies. Int J Pharm. 2006;315(1–2):158–66.

    Article  CAS  Google Scholar 

  41. Zheng F, Shi XW, Yang GF, Gong LL, Yuan HY, Cui YJ, Wang Y, Du YM, Li Y. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: Results of an in vitro and in vivo study. Life Sci. 2007;80(4):388–96.

    Article  CAS  Google Scholar 

  42. Yu SH, Wu SJ, Tang DW, Ho YC, Mi FL, Kuo TH, Sung HW. Stimuli-responsive materials prepared from carboxymethyl chitosan and poly(γ-glutamic acid) for protein delivery. Carbohydr Polym. 2012;87(1):531–6.

    Article  CAS  Google Scholar 

  43. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces. 2007;9(1):24–34.

    Article  CAS  Google Scholar 

  44. Wang Z, Zeng R, Tu M, Zhao J. A novel biomimetic chitosan-based nanocarrier with suppression of the protein-nanocarrier interactions. Mater Lett. 2012;77:38–40.

    Article  CAS  Google Scholar 

  45. Luo Y, Zhang B, Whent M, Yu L, Wang Q. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitrocontrolled release study. Colloids Surf B Biointerfaces. 2011;85(2):145–52.

    Google Scholar 

  46. Gupta NK, Tomar P, Sharma V, Dixit VK. Development and characterization of chitosan coated poly-(ɛ-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine. 2011;29(48):9026–37.

    Article  CAS  Google Scholar 

  47. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59–82.

    Article  CAS  Google Scholar 

  48. Bal SM, Slütter B, Riet E, Kruithof AC, Ding Z, Kersten GFA, Jiskoot W, Bouwstra JA. Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release. 2010;142(3):374–83.

    Article  CAS  Google Scholar 

  49. Zhao S, Wu X, Guo W, Du Y, Yu L, Tang J. N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a novel delivery system for Parathyroid Hormone-Related Protein 1–34. Int J Pharm. 2010;393(1–2):269–73.

    Google Scholar 

  50. Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan for mucosal vaccination review article. Adv Drug Deliv Rev. 2001;52(2):139–44.

    Article  Google Scholar 

  51. Xu Y, Du Y, Huang R, Gao L. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials. 2003;24(27):5015–22.

    Article  CAS  Google Scholar 

  52. Sayın B, Somavarapu S, Li XW, Sesardic D, Şenel S, Alpar OH. TMC–MCC (N-trimethyl chitosan–mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccine. Eur J Pharm Sci. 2009;38(4):362–9.

    Google Scholar 

  53. Li X, Chen M, Yang W, Zhou Z, Liu L, Zhang Q. Interaction of bovine serum albumin with self-assembled nanoparticles of 6-O-cholesterol modified chitosan. Colloids Surf B Biointerfaces. 2012;92:136–41.

    Article  CAS  Google Scholar 

  54. Xue X, Wang J, Mei L, Wang Z, Qi K, Yang B. Recognition and enrichment specificity of Fe3O4 magnetic nanoparticles surface modified by chitosan and Staphylococcus aureus enterotoxins A antiserum. Colloids Surf B Biointerfaces. 2012;103:107–13.

    Article  CAS  Google Scholar 

  55. Zhang Y, Yin P, Zhao X, Wang J, Wang J, Wang C, Ren L, Zhang Q. O-Carboxymethyl-chitosan/organosilica hybrid nanoparticles as non-viral vectors for gene delivery. Mater Sci Eng C. 2009;29(6):2045–9.

    Article  CAS  Google Scholar 

  56. Vongchan P, Wutti-In Y, Sajomsang W, Gonil P, Kothan S, Linhardt RJ. N, N, N-Trimethyl chitosan nanoparticles for the delivery of monoclonal antibodies against hepatocellular carcinoma cells. Carbohydr Polym. 2011;85(1):215–20.

    Article  CAS  Google Scholar 

  57. Kumar R, Ahmed VPI, Parameswaran V, Sudhakaran R, Sarath Babu V, Sahul Hameed AS. Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol. 2008;25(1–2):47–56.

    Google Scholar 

  58. Bal SM, Slütter B, Verheul R, Bouwstra JA, Jiskoot W. Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: Adjuvant- and site-dependent immunogenicity in mice. Eur J Pharm Sci. 2012;45(4):475–81.

    Article  CAS  Google Scholar 

  59. Chae SY, Son S, Lee M, Jang MK, Nah JW. Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. J Control Release. 2005;109(1–3):330–44.

    Article  CAS  Google Scholar 

  60. Cui Z, Mumper RJ. Chitosan-based nanoparticles for topical genetic immunization. J Control Release. 2001;75(3):409–19.

    Article  CAS  Google Scholar 

  61. Bowman K, Sarkar R, Raut S, Leong KW. Gene transfer to hemophilia A mice via oral delivery of FVIII–chitosan nanoparticles. J Control Release. 2008;132(3):252–9.

    Article  CAS  Google Scholar 

  62. Rajam M, Pulavendran S, Rose C, Mandal AB. Chitosan nanoparticles as a dual growth factor delivery system for t engineering applications. Int J Pharm. 2011;410(1–2):145–52.

    Article  CAS  Google Scholar 

  63. Yang Y, et al. Porcine interleukin-2 gene encapsulated in chitosan nanoparticles enhances immune response of mice to piglet paratyphoid vaccine. Comp Immunol Microbiol Infect Dis. 2007;30(1):19–32.

    Article  Google Scholar 

  64. Chen F, Zhang ZR, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm. 2008;349(1–2):226–33.

    Article  CAS  Google Scholar 

  65. Anal AK, Tobiassen A, Flanagan J, Singh H. Preparation and characterization of nanoparticles formed by chitosan–caseinate interactions. Colloids Surf B Biointerfaces. 2008;64(1):104–10.

    Article  CAS  Google Scholar 

  66. Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández Á, Alonso MJ. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine. 2010;28(14):2607–14.

    Article  CAS  Google Scholar 

  67. Tafaghodi M, Saluja V, Kersten GFA, Kraan H, Slütter B, Amorij JP, Jiskoot W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: impact of formulation on physicochemical and immunological characteristics. Vaccine. 2012;30(36):5341–8.

    Article  CAS  Google Scholar 

  68. Liu Y, Sun Y, Li Y, Xu S, Tang J, Ding J, Xu Y. Preparation and characterization of α-galactosidase-loaded chitosan nanoparticles for use in foods. Carbohydr Polym. 2011;83(3):1162–8.

    Article  CAS  Google Scholar 

  69. Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, Jiskoot W. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine. 2007;25(1):144–53.

    Article  CAS  Google Scholar 

  70. Xu Q, Guo L, Gu X, Zhang B, Hu X, Zhang J, et al. Prevention of colorectal cancer liver metastasis by exploiting liver immunity via chitosan-TPP/nanoparticles formulated with IL-12. Biomaterials. 2012;33(15):3909–18.

    Google Scholar 

  71. Zhao X, Yu SB, Wu FL, Mao ZB, Yu CL. Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J Control Release. 2006;112(2):223–8.

    Article  CAS  Google Scholar 

  72. Slütter B, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 2010;28(38):6282–91.

    Article  CAS  Google Scholar 

  73. Vila A, Sánchez A, Janes K, Behrens I, Kissel T, Jato JLV, Alonso MJ. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm. 2004;57(1):123–31.

    Article  CAS  Google Scholar 

  74. Lebre F, Bento D, Jesus S, Borges O. Chapter seven - Chitosan-Based Nanoparticles as a Hepatitis B Antigen Delivery System. Methods Enzymol. 2012;509:127–42.

    Article  CAS  Google Scholar 

  75. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44(2–3):65–73.

    Article  CAS  Google Scholar 

  76. Chen F, Zhang ZR, Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int J Pharm. 2007;336(1):166–73.

    Article  CAS  Google Scholar 

  77. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111(1–2):107–16.

    Article  CAS  Google Scholar 

  78. Moon HJ, Lee JS, Talactac MR, Chowdhury MYE, Kim JH, Park ME, Choi YK, Sung MH, Kim CJ. Mucosal immunization with recombinant influenza hemagglutinin protein and poly gamma-glutamate/chitosan nanoparticles induces protection against highly pathogenic influenza A virus. Vet Microbiol. 2012;160(3-4):277–89.

    Article  CAS  Google Scholar 

  79. Tan WB, Huang N, Zhang Y. Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. J Colloid Interface Sci. 2007;310(2):464–70.

    Article  CAS  Google Scholar 

  80. Du D, Chen S, Song D, Li H, Chen X. Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron. 2008;24(3):475–9.

    Google Scholar 

  81. Bahadur KCR, Aryal S, Bhattarai N, Kim HY. Ceramic modification of N-acylated chitosan stabilized gold nanoparticles. Scr Mater. 2006;54(12):2029–34.

    Article  CAS  Google Scholar 

  82. Luo Y, Zhang B, Cheng WH, Wang Q. Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydr Polym. 2010;82(3):942–51.

    Article  CAS  Google Scholar 

  83. Couto DS, Hong Z, Mano JF. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater. 2009;5(1):115–23.

    Google Scholar 

  84. Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R. Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for t engineering applications. Carbohydr Polym. 2010;79(2):284–9.

    Article  CAS  Google Scholar 

  85. Jayakumar R, Ramachandran R, Divyarani VV, Chennazhi KP, Tamura H, Nair SV. Fabrication of chitin–chitosan/nano TiO2-composite scaffolds for t engineering applications. Int J Biol Macromol. 2011;48(2):336–44.

    Article  CAS  Google Scholar 

  86. Zhang SB, Wu ZS, Guo MM, Shen GL, Yu RQ. A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle label. Talanta. 2007;71(4):1530–5.

    Google Scholar 

  87. Zeng R, Tu M, Liu H, Zhao J, Zha Z, Zhou C. Preparation, structure, drug release and bioinspired mineralization of chitosan-based nanocomplexes for bone t engineering. Carbohydr Polym. 2009;78(1):107–11.

    Article  CAS  Google Scholar 

  88. Chen F, Zhu Y. Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: Sensitive response to the narrow pH range. Microporous and Mesoporous Mater. 2012;150:83–9.

    Article  CAS  Google Scholar 

  89. Sun C, Qu R, Chen H, Ji C, Wang C, Sun Y, Wang B. Degradation behavior of chitosan chains in the ‘green’ synthesis of gold nanoparticles. Carbohydr Res. 2008;343(15):2595–9.

    Article  CAS  Google Scholar 

  90. Twu YK, Chen YW, Shih CM. Preparation of silver nanoparticles using chitosan suspensions. Powder Technol. 2008;185(3):251–7.

    Article  CAS  Google Scholar 

  91. Rodríguez-Argüelles MC, Sieiro C, Cao R, Nasi L. Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. J Colloid Interface Sci. 2011;364(1):80–4.

    Google Scholar 

  92. Pinto RJ, Fernandes SC, Freire CS, Sadocco P, Causio J, Neto CP, Trindade T. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr Res. 2012;348:77–83.

    Google Scholar 

  93. Li Z, Chen P, Xu X, Ye X, Wang J. Preparation of chitosan–sodium alginate microcapsules containing ZnS nanoparticles and its effect on the drug release. Mater Sci Eng C. 2009;29(7):2250–3.

    Article  CAS  Google Scholar 

  94. Zhang S, Luo Y, Zeng H, Wang Q, Tian F, Song J, Cheng WH. Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response. J Nutr Biochem. 2011;22(12):1137–42.

    Article  CAS  Google Scholar 

  95. Stefan M, Melnig V, Pricop D, Neagu A, Mihasan M, Tartau L, Hritcu L. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats. Mater Sci Eng C. 2012;33(1):550–6.

    Article  CAS  Google Scholar 

  96. Caseli L, Santos JDS, Aroca RF, Oliveira Jr ON. Controlled fabrication of gold nanoparticles biomediated by glucose oxidase immobilized on chitosan layer-by-layer films. Mater Sci Eng C. 2009;29(5):1687–90.

    Article  CAS  Google Scholar 

  97. Boca SC, Potara M, Toderas F, Stephan O, Baldeck PL, Astilean S. Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese Hamster Ovary cells. Mater Sci Eng C. 2011;31(2):184–9.

    Article  CAS  Google Scholar 

  98. Wei D, Ye Y, Jia X, Yuan C, Qian W. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr Res. 2010;345(1):74–81.

    Article  CAS  Google Scholar 

  99. Amarnath K, Kumar J, Reddy T, Mahesh V, Ayyappan SR, Nellore J. Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity. Colloids Surf B Biointerfaces. 2012;92:254–61.

    Article  CAS  Google Scholar 

  100. Adlim M, Bakar MA, Liew KY, Ismail J. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A Chem. 2004;212(1–2):141–9.

    Article  CAS  Google Scholar 

  101. Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res. 2009;344(17):2375–82.

    Article  CAS  Google Scholar 

  102. Fouda MMG, El-Aassar MR, Al-Deyab SS. Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydr Polym. 2012;92(2):1012–7.

    Google Scholar 

  103. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym. 2009;75(3):385–9.

    Article  CAS  Google Scholar 

  104. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater. 2005;6(3–4):335–40.

    Article  CAS  Google Scholar 

  105. Luo XL, Xu JJ, Du Y, Chen HY. A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem. 2004;334(2):284–9.

    Article  CAS  Google Scholar 

  106. Du Y, Luo XL, Xu JJ, Chen HY. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry. 2007;70(2):342–7.

    Article  CAS  Google Scholar 

  107. Gomathi P, Ragupathy D, Choi JH, Yeum JH, Lee SC, Kim JC, Lee SH, Ghim HD. Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor. Sens Actuators B. 2011;153(1):44–9.

    Article  CAS  Google Scholar 

  108. Vimala K, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application. Colloids Surf B Biointerfaces. 2010;76(1):248–58.

    Article  CAS  Google Scholar 

  109. Feng JJ, Zhao G, Xu JJ, Chen HY. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem. 2005;342(2):280–6.

    Google Scholar 

  110. Boca SC, Potara M, Gabudean AM, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311(2):131–40.

    Article  CAS  Google Scholar 

  111. Kustov LM, Finashina ED, Shuvalova EV, Tkachenko OP, Kirichenko OA. Pd–Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environ Int. 2011;37(6):1044–52.

    Article  CAS  Google Scholar 

  112. Qi L, Xu Z. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp. 2004;251(1–3):183–90.

    Article  CAS  Google Scholar 

  113. Qi L, Xu Z, Jiang X, Li Y, Wang M. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett. 2005;15(5):1397–9.

    Article  CAS  Google Scholar 

  114. Reicha FM, Sarhan A, Abdel-Hamid MI, El-Sherbiny IM. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydr Polym. 2012;89(1):236–44.

    Article  CAS  Google Scholar 

  115. Jin Y, Li Z, Hu L, Shi X, Guan W, Du Y. Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma. Carbohydr Polym. 2013;91(1):152–6.

    Article  CAS  Google Scholar 

  116. Zhao Y, Zhou Y, Wu X, Wang L, Xu L, Wei S. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers. Appl Surf Sci. 2012;258(22):8867–73.

    Article  CAS  Google Scholar 

  117. Zhang X, Zhang H, Wu Z, Wang Z, Niu H, Li C. Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm. 2008;68(3):526–34.

    Article  CAS  Google Scholar 

  118. Li J, Kong M, Cheng XJ, Dang QF, Zhou X, Wei YN, Chen XG. Preparation of biocompatible chitosan grafted poly(lactic acid) nanoparticles. Int J Biol Macromol. 2012;51(3):221–7.

    Article  CAS  Google Scholar 

  119. Seo DH, Jeong Y, Kim DG, Jang MJ, Jang MK, Nah JW. Methotrexate-incorporated polymeric nanoparticles of methoxy poly(ethylene glycol)-grafted chitosan. Colloids Surf B Biointerfaces. 2009;69(2):157–63.

    Article  CAS  Google Scholar 

  120. Britto D, Moura MR, Aouada FA, Mattoso LHC, Assis OBG. N, N, N-trimethyl chitosan nanoparticles as a vitamin carrier system. Food Hydrocoll. 2012;27(2):487–93.

    Article  CAS  Google Scholar 

  121. Bhattarai SR, Remant Bahadur KC, Aryal S, Khil MS, Kim HY. N-Acylated chitosan stabilized iron oxide nanoparticles as a novel nano-matrix and ceramic modification. Carbohydr Polym. 2007;69(3):467–77.

    Article  CAS  Google Scholar 

  122. Bravo-Osuna I, Schmitz T, Bernkop-Schnürch A, Vauthier C, Ponchel G. Elaboration and characterization of thiolated chitosan-coated acrylic nanoparticles. Int J Pharm. 2006;316(1–2):170–5.

    Article  CAS  Google Scholar 

  123. Atyabi F, Moghaddam FA, Dinarvand R, Zohuriaan-Mehr MJ, Ponchel G. Thiolated chitosan coated poly hydroxyethyl methacrylate nanoparticles: Synthesis and characterization. Carbohydr Polym. 2008;74(1):59–67.

    Article  CAS  Google Scholar 

  124. Xing K, et al. Antibacterial activity of oleoyl-chitosan nanoparticles: A novel antibacterial dispersion system. Carbohydr Polym. 2008;74(1):114–20.

    Article  CAS  Google Scholar 

  125. Anitha A, Rani VVD, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R. Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydr Polym. 2009;78(4):672–7.

    Google Scholar 

  126. Sayın B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, Şenel S. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm. 2008;363(1–2):139–48.

    Article  CAS  Google Scholar 

  127. Yuan XB, et al. Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm. 2008;349(1–2):241–8.

    Article  CAS  Google Scholar 

  128. Wang B, He C, Tang C, Yin C. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials. 2011;32(20):4630–8.

    Article  CAS  Google Scholar 

  129. Morris GA, Castile J, Smith A, Adams GG, Harding SE. The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP) –chitosan nanoparticles. Carbohydr Polym. 2011;84(4):1430–4.

    Article  CAS  Google Scholar 

  130. Park K, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release. 2007;122(3):305–14.

    Article  CAS  Google Scholar 

  131. Yuan W, Fu J, Su K, Ji J. Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids Surf B Biointerfaces. 2010;76(2):549–55.

    Google Scholar 

  132. Zhang Y, Huo M, Zhou J, Yu D, Wu Y. Potential of amphiphilically modified low molecular weight chitosan as a novel carrier for hydrophobic anticancer drug: Synthesis, characterization, micellization and cytotoxicity evaluation. Carbohydr Polym. 2009;77(2):231–8.

    Google Scholar 

  133. Wang Y, Jiang Q, Liu LR, Zhang Q. The interaction between bovine serum albumin and the self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan. Polymer. 2007;48(14):4135–42.

    Article  CAS  Google Scholar 

  134. Yang X, Zhang Q, Wang Y, Chen H, Zhang H, Gao F, Liu L. Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan: Synthesis; characterization; aggregation and methotrexate release in vitro. Colloids Surf B Biointerfaces. 2008;61(2):125–31.

    Article  CAS  Google Scholar 

  135. Park JH, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials. 2006;27(1):119–26.

    Article  CAS  Google Scholar 

  136. Wang YS, Liu LR, Jiang Q, Zhang QQ. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin. Eur Polym J. 2007;43(1):43–51.

    Article  CAS  Google Scholar 

  137. Liu C, Fan W, Chen X, Liu C, Meng X, Park HJ. Self-assembled nanoparticles based on linoleic-acid modified carboxymethyl-chitosan as carrier of adriamycin (ADR). Curr Appl Phys. 2007;7(1):e125–9.

    Article  Google Scholar 

  138. Quiñones JP, et al. Self-assembled nanoparticles of modified-chitosan conjugates for the sustained release of DL-α-tocopherol. Carbohydr Polym. 2012;92(1):856–64.

    Article  CAS  Google Scholar 

  139. Yoo SH, Lee JE, Chung H, Kwon IC, Jeong SY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release. 2005;103(1):235–43.

    Article  CAS  Google Scholar 

  140. Mukhopadhyay P, Sarkar K, Chakraborty M, Bhattacharya S, Mishra R, Kundu PP. Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C. 2012;33(1):376–82.

    Google Scholar 

  141. Zhang J, Chen XG, Li YY, Liu CS. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed Nanotech Biol Med. 2007;3(4):258–65.

    Article  CAS  Google Scholar 

  142. Wang Y, Yang X, Yang J, Wang Y, Chen R, Wu J, Liu Y, Zhang N. Self-assembled nanoparticles of methotrexate conjugated O-carboxymethyl chitosan: Preparation, characterization and drug release behavior in vitro. Carbohydr Polym. 2011;86(4):1665–70.

    Article  CAS  Google Scholar 

  143. Liu CG, Chen XG, Park HJ. Self-assembled nanoparticles based on linoleic-acid modified chitosan: Stability and adsorption of trypsin. Carbohydr Polym. 2005;62(3):293–8.

    Article  CAS  Google Scholar 

  144. Gao Y, Zhang Z, Chen L, Gu W, Li Y. Chitosan N-betainates/DNA self-assembly nanoparticles for gene delivery: In vitro uptake and transfection efficiency. Int J Pharm. 2009;371(1–2):156–62.

    Article  CAS  Google Scholar 

  145. Shelma R, Paul W, Sharma CP. Development and characterization of self-aggregated nanoparticles from anacardoylated chitosan as a carrier for insulin. Carbohydr Polym. 2010;80(1):285–90.

    Article  CAS  Google Scholar 

  146. Gao Yu XZ, Chen S, Gu W, Chen L, Li Y. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency. Int J Pharm. 2008;359(1–2):241–6.

    Article  CAS  Google Scholar 

  147. Li Y, Zhang S, Meng X, Chen X, Ren G. The preparation and characterization of a novel amphiphilic oleoyl-carboxymethyl chitosan self-assembled nanoparticles. Carbohydr Polym. 2011;83(1):130–6.

    Article  CAS  Google Scholar 

  148. Kong XY, et al. Synthesis and characterization of a novel MPEG–chitosan diblock copolymer and self-assembly of nanoparticles. Carbohydr Polym. 2010;79(1):170–5.

    Article  CAS  Google Scholar 

  149. Chen M, Liu Y, Yang W, Li X, Liu L, Zhou Z, Wang Y, Li R, Zhang Q. Preparation and characterization of self-assembled nanoparticles of 6-O-cholesterol-modified chitosan for drug delivery. Carbohydr Polym. 2011;84(4):1244–51.

    Article  CAS  Google Scholar 

  150. Tavares IS, Caroni ALPF, Dantas Neto AA, Pereira MR, Fonseca JLC. Surface charging and dimensions of chitosan coacervated nanoparticles. Colloids Surf B Biointerfaces. 2012;90(1):254–8.

    Article  CAS  Google Scholar 

  151. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials. 2002;23(15):3193–201.

    Article  CAS  Google Scholar 

  152. Lee DW, Powers K, Baney R. Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr Polym. 2004;58(4):371–7.

    Article  CAS  Google Scholar 

  153. Yinsong W, Lingrong L, Jian W, Zhang Q. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates. Carbohydr Polym. 2007;69(3):597–606.

    Google Scholar 

  154. Saravanakumar G, Min KH, Min DS, Kim AY, Lee CM, Cho YW, Lee SC, et al. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: Synthesis, characterization, and in vivo biodistribution. J Control Release. 2009;140(3):210–7.

    Google Scholar 

  155. Hou Z, Han J, Zhan C, Zhou C, Hu Q, Zhang Q. Synthesis and evaluation of N-succinyl-chitosan nanoparticles toward local hydroxycamptothecin delivery. Carbohydr Polym. 2010;81(4):765–8.

    Article  CAS  Google Scholar 

  156. Li P, Wang Y, Zeng F, Chen L, Zheng P, Kong LX. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res. 2011;346(6):801–6.

    Article  CAS  Google Scholar 

  157. Jeevitha D, Amarnath K. Chitosan/PLA nanoparticles as a novel carrier for the delivery of anthraquinone: Synthesis, characterization and in vitro cytotoxicity evaluation. Colloids Surf B Biointerfaces. 2013;101:126–34.

    Google Scholar 

  158. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 2010;31(5):908–15.

    Article  CAS  Google Scholar 

  159. Chakraborty SP, Mahapatra SK, Sahu SK, Pramanik P, Roy S. Antioxidative effect of folate–modified chitosan nanoparticles. Asian Pac J Trop Biomed. 2011;1(1):29–38.

    Article  CAS  Google Scholar 

  160. Chakraborty SP, Sahu SK, Pramanik P, Roy S. Biocompatibility of folate-modified chitosan nanoparticles. Asian Pac J Trop Biomed. 2012;2(3):215–9.

    Article  CAS  Google Scholar 

  161. Li T, Longobardi L, Granero-Molto F, Myers TJ, Yan Y, Spagnoli A. Use of glycol chitosan modified by 5β-cholanic acid nanoparticles for the sustained release of proteins during murine embryonic limb skeletogenesis. J Control Release. 2010;144(1):101–8.

    Article  CAS  Google Scholar 

  162. Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, Kim SY, Cho YW. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J Control Release. 2006;115(1):37–45.

    Article  CAS  Google Scholar 

  163. Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R. Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym. 2010;80(2):442–8.

    Article  CAS  Google Scholar 

  164. Zheng Y, Yang W, Wang C, Hu J, Fu S, Dong L, Wu L, Shen X. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: Preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm. 2007;67(3):621–31.

    Article  CAS  Google Scholar 

  165. Chiu YL, Ho YC, Chen YM, Peng SF, Ke CJ, Chen KJ, Mi FL, Sung HW. The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan. J Control Release. 2010;146(1):152–9.

    Google Scholar 

  166. Cho Y, Kim JT, Park HJ. Size-controlled self-aggregated N-acyl chitosan nanoparticles as a vitamin C carrier. Carbohydr Polym. 2012;88(3):1087–92.

    Article  CAS  Google Scholar 

  167. Zhao A, Wang T, Yao M, Li H. Effects of chitosan-TPP nanoparticles on hepatic t after severe bleeding. J Med Colleges PLA. 2011;26(5):283–92.

    Article  CAS  Google Scholar 

  168. Yuan X, Li H, Yuan Y. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr Polym. 2006;65(3):337–45.

    Article  CAS  Google Scholar 

  169. Shu S, Zhang X, Teng D, Wang Z, Li C. Polyelectrolyte nanoparticles based on water-soluble chitosan–poly(L-aspartic acid)–polyethylene glycol for controlled protein release. Carbohydr Res. 2009;344(10):1197–204.

    Google Scholar 

  170. Chronopoulou L, Cutonilli A, Cametti C, Dentini M, Palocci C. PLGA-based nanoparticles: Effect of chitosan in the aggregate stabilization. A dielectric relaxation spectroscopy study. Colloids Surf B Biointerfaces. 2012;97:117–23.

    Article  CAS  Google Scholar 

  171. Moura MR, Aouada FA, Mattoso LHC. Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci. 2008;321(2):477–83.

    Article  CAS  Google Scholar 

  172. Tan Y, Liu CG. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: Synthesis, characterization and application in vitro. Colloids Surf B Biointerfaces. 2009;69(2):178–82.

    Article  CAS  Google Scholar 

  173. Kim JH, Kim YS, Kim S, Park JH, Kim K, Choi K, Chung H, et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release. 2006;111(1–2):228–34.

    Article  CAS  Google Scholar 

  174. Pawar H, Douroumis D, Boateng JS. Preparation and optimization of PMAA–chitosan–PEG nanoparticles for oral drug delivery. Colloids Surf B Biointerfaces. 2012;90:102–8.

    Article  CAS  Google Scholar 

  175. Shi L, Tang C, Yin C. Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma. Biomaterials. 2012;33(30):7594–604.

    Article  CAS  Google Scholar 

  176. Luo H, Su H, Wang X, Wang L, Li J. N-Succinyl-chitosan nanoparticles induced mitochondria-dependent apoptosis in K562. Mol Cell Probes. 2012;26(4):164–9.

    Article  CAS  Google Scholar 

  177. Zhang J, Chen XG, Sun GZ, Huang L, Cheng XJ. Effect of molecular weight on the oleoyl-chitosan nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces. 2010;77(2):125–30.

    Article  CAS  Google Scholar 

  178. Snima KS, Jayakumar R, Unnikrishnan AG, Nair SV, Lakshmanan VK. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym. 2012;89(3):1003–7.

    Article  CAS  Google Scholar 

  179. Xing K, Chen XG, Liu CS, Cha DS, Park HJ. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int J Food Microbiol. 2009;132(2–3):127–33.

    Article  CAS  Google Scholar 

  180. Grenha A, Remuñán-López C, Carvalho ELS, Seijo B. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm. 2008;69(1):83–93.

    Article  CAS  Google Scholar 

  181. Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, Jayakumar R. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym. 2010;80(3):833–8.

    Article  CAS  Google Scholar 

  182. Zheng H, Zhang X, Xiong F, Zhu Z, Lu B, Yin Y, Xu P, Du Y. Preparation, characterization, and t distribution in mice of lactosaminated carboxymethyl chitosan nanoparticles. Carbohydr Polym. 2011;83(3):1139–45.

    Article  CAS  Google Scholar 

  183. Quiñones JP, Gothelf KV, Kjems J, Caballero ÁMH, Schmidt C, Covas CP. N, O6-partially acetylated chitosan nanoparticles hydrophobically-modified for controlled release of steroids and vitamin E. Carbohydr Polym. 2013;91(1):143–51.

    Article  CAS  Google Scholar 

  184. Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Shojaosadati SA, Dorkoosh FA, Elsabee MZ. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem. 2011;126(3):935–40.

    Article  CAS  Google Scholar 

  185. Du YZ, Ying XY, Wang L, Zhai Y, Yuan H, Yu RS, Hu FQ. Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. Int J Pharm. 2010;392(1–2):164–9.

    Article  CAS  Google Scholar 

  186. Akhlaghi SP, Saremi S, Ostad SN, Rassoul D, Atyabi F. Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomed Nanotech Biol Med. 2010;6(5):689–97.

    Article  CAS  Google Scholar 

  187. Wang T, Xu Q, Wu Y, Zeng A, Li M, Gao H. Quaternized chitosan (QCS)/poly (aspartic acid) nanoparticles as a protein drug-delivery system. Carbohydr Res. 2009;344(7):908–14.

    Article  CAS  Google Scholar 

  188. Bayat A, Larijani B, Ahmadian S, Junginger HE, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomed Nanotech Biol Med. 2008;4(2):115–20.

    Article  CAS  Google Scholar 

  189. Xu R, Xin S, Zhou X, Li W, Cao F, Feng X, Deng H. Quaternized chitosan–organic rectorite intercalated composites based nanoparticles for protein controlled release. Int J Pharm. 2012;438(1–2):258–65.

    Article  CAS  Google Scholar 

  190. Sadeghi AMM, Dorkoosh FA, Avadi MR, Saadat P, Rafiee-Tehrani M, Junginger HE. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm. 2008;355(1–2):299–306.

    Google Scholar 

  191. Bayat A, Dorkoosh FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, Morteza RT. Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: Ex vivo and in vivo studies. Int J Pharm. 2008;356(1–2):259–66.

    Article  CAS  Google Scholar 

  192. Subbiah R, et al. N, N, N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym. 2012;89(4):1289–97.

    Article  CAS  Google Scholar 

  193. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L. PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications Review Article. Prog Polym Sci. 2012;37(5):659–85.

    Article  CAS  Google Scholar 

  194. Zhu S, Qian F, Zhang Y, Tang C, Yin C. Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles. Eur Polym J. 2007;43(6):2244–53.

    Article  CAS  Google Scholar 

  195. Na JH, et al. Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials. 2011;32(22):5252–61.

    Article  CAS  Google Scholar 

  196. Jin LS, Koo H, Jeong H, Huh MS, Choi Y, Jeong SY, Byun Y, Choi K, et al. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release. 2011;152(1):21–9.

    Article  CAS  Google Scholar 

  197. Remant BKC, Lee SM, Yoo SE, Choi JH, Ghim HD. Glycoconjugated chitosan stabilized iron oxide nanoparticles as a multifunctional nanoprobe. Mater Sci Eng C. 2009;29(5):1668–73.

    Article  CAS  Google Scholar 

  198. Lee SJ, Park K, Oh YK, Kwon SH, Her S, Kim IS, Choi K, et al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials. 2009;30(15):2929–39.

    Article  CAS  Google Scholar 

  199. Kim JH, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release. 2008;127(1):41–9.

    Article  CAS  Google Scholar 

  200. Min KH, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127(3):208–18.

    Article  CAS  Google Scholar 

  201. Trapani A, Sitterberg J, Bakowsky U, Kissel T. The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. Int J Pharm. 2009;375(1–2):97–106.

    Article  CAS  Google Scholar 

  202. Nam HY, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009;135(3):259–67.

    Article  CAS  Google Scholar 

  203. Yu JM, Li YJ, Qiu LY, Jin Y. Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate: Preparation, characterization, and preliminary assessment as a new drug delivery carrier. Eur Polym J. 2008;44(3):555–65.

    Article  CAS  Google Scholar 

  204. Zhang W, Shen H, Xie MQ, Zhuang L, Deng YY, Hu SL, Lin YY. Synthesis of carboxymethyl-chitosan-bound magnetic nanoparticles by the spraying co-precipitation method. Scr Mater. 2008;59(2):211–4.

    Article  CAS  Google Scholar 

  205. Zhi J, Wang Y, Lu Y, Ma J, Guangs L. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React Funct Polym. 2006;66(12):1552–8.

    Google Scholar 

  206. Zhu A, Yuan L, Liao T. Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan. Int J Pharm. 2008;350(1–2):361–8.

    Article  CAS  Google Scholar 

  207. Zhang L, Zhu X, Sun H, Chi G, Xu J, Sun Y. Control synthesis of magnetic Fe3O4–chitosan nanoparticles under UV irradiation in aqueous system. Curr Appl Phys. 2010;10(3):828–33.

    Article  Google Scholar 

  208. Guo YH, Li FR, Bao SY, Han T, Cao JJ, Zhou HX. Preparation and characteristics of carboplatin-Fe@C-loaded chitosan nanoparticles with dual physical drug-loaded mechanisms. Curr Appl Phys. 2007;7:e97–e102.

    Article  Google Scholar 

  209. Zapata EVE, et al. Adherence of paclitaxel drug in magnetite chitosan nanoparticles. J Alloys Compd. 2012;536:S441–4.

    Article  CAS  Google Scholar 

  210. Zhao DL, Wang XX, Zeng XW, Xia QS, Tang JT. Preparation and inductive heating property of Fe3O4–chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. J Alloys Compd. 2009;477(1–2):739–43.

    Article  CAS  Google Scholar 

  211. Zheng N, Zhou X, Yang W, Li X, Yuan Z. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film. Talanta. 2009;79(3):780–6.

    Article  CAS  Google Scholar 

  212. Qu JB, Shao HH, Jing GL, Huang F. PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: Preparation, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces. 2013;102:37–44.

    Article  CAS  Google Scholar 

  213. Kim EH, Ahn Y, Lee HS. Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J Alloys Compd. 2007;434–435:633–6.

    Google Scholar 

  214. Qiao T, et al. Conjugation of catecholamines on magnetic nanoparticles coated with sulfonated chitosan. Colloids Surf A Physicochem Eng Asp. 2011;380(1–3):169–74.

    Article  CAS  Google Scholar 

  215. Kumari S, Singh RP. Glycolic acid-g-chitosan–Pt–Fe3O4 nanoparticles nanohybrid scaffold for tissue engineering and drug delivery. Int J Biol Macromol. 2012;51(1–2):76–82.

    Google Scholar 

  216. Qu J, Liu G, Wang Y, Hong R. Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol. 2010;21(4):461–7.

    Article  CAS  Google Scholar 

  217. Zhu L, Ma J, Jia N, Zhao Y, Shen H. Chitosan-coated magnetic nanoparticles as carriers of 5-Fluorouracil: Preparation, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces. 2009;68(1):1–6.

    Article  CAS  Google Scholar 

  218. Finotelli PV, Silva DD, Sola-Penna M, Rossi AM, Farina M, Andrade Leonardo R, Takeuchi AY, Rocha-Leão MH. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf B Biointerfaces. 2010;81(1):206–11.

    Article  CAS  Google Scholar 

  219. Liu Y, Jia S, Wu Q, Ran J, Zhang W, Wu S. Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal Commun. 2011;12(8):717–20.

    Article  CAS  Google Scholar 

  220. BhattaraiSR KSY, Yun J, Lee KC, Yi HK, Lee DY, Kim HY, Hwang PH. N-hexanoyl chitosan-stabilized magnetic nanoparticles: enhancement of adenoviral-mediated gene expression both in vitro and in vivo. Nanomed Nanotech Biol Med. 2008;4(2):146–54.

    Article  CAS  Google Scholar 

  221. Ghaemy M, Naseri M. Synthesis of chitosan networks: Swelling, drug release, and magnetically assisted BSA separation using Fe3O4 nanoparticles. Carbohydr Polym. 2012;90(3):1265–72.

    Google Scholar 

  222. Ju HY, et al. Optimal covalent immobilization of α-chymotrypsin on Fe3O4-chitosan nanoparticles. J Mol Catal B: Enzym. 2012;78:9–15.

    Article  CAS  Google Scholar 

  223. Cheong SJ, et al. Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int J Pharm. 2009;372(1–2):169–76.

    Article  CAS  Google Scholar 

  224. Chen HJ, Zhang ZH, Luo LJ, Yao SZ. Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin. Sens Actuators B. 2012;163(1):76–83.

    Article  CAS  Google Scholar 

  225. Zhou L, Jin J, Liu Z, Liang X, Shang C. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater. 2011;185(2–3):1045–52.

    Article  CAS  Google Scholar 

  226. Chen JP, Yang PC, Ma YH, Wu T. Characterization of chitosan magnetic nanoparticles for in situ delivery of t plasminogen activator. Carbohydr Polym. 2011;84(1):364–72.

    Article  CAS  Google Scholar 

  227. Chang YC, Chang SW, Chen DH. Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym. 2006;66(3):335–41.

    Article  CAS  Google Scholar 

  228. Luo L, Li Q, Xu Y, Ding Y, Wang X, Deng D, Xu Y. Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sens Actuators B. 2010;145(1):293–8.

    Article  CAS  Google Scholar 

  229. Wang Y, Wang X, Luo G, Dai Y. Adsorption of bovine serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresour Technol. 2008;99(9):3881–4.

    Google Scholar 

  230. Li GY, Jiang YR, Huang KL, Ding P, Yao LL. Kinetics of adsorption of Saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4–chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp. 2008;320(1–3):11–8.

    Article  CAS  Google Scholar 

  231. Sun J, Rao S, Su Y, Xu R, Yang Y. Magnetic carboxymethyl chitosan nanoparticles with immobilized metal ions for lysozyme adsorption. Colloids Surf A Physicochem Eng Asp. 2011;389(1–3):97–103.

    Article  CAS  Google Scholar 

  232. Agrawal P, Strijkers GJ, Nicolay K. Chitosan-based systems for molecular imaging review article. Adv Drug Delivery Rev. 2010;62(1):42–58.

    Article  CAS  Google Scholar 

  233. Yata VK, Ghosh SS. Investigating structure and fluorescence properties of green fluorescent protein released from chitosan nanoparticles. Mater Lett. 2012;73:209–11.

    Article  CAS  Google Scholar 

  234. Zhao J, Wu J. Preparation and characterization of the fluorescent chitosan nanoparticle probe. Chin J Anal Chem. 2006;34(11):1555–9.

    Article  CAS  Google Scholar 

  235. Hu ZG, Zhang J, Chan WL, Szeto YS. The sorption of acid dye onto chitosan nanoparticles. Polymer. 2006;47(16):5838–42.

    Article  CAS  Google Scholar 

  236. Du WL, Xu ZR, Han XY, Xu YL, Miao ZG. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. J Hazard Mater. 2008;153(1–2):152–6.

    Article  CAS  Google Scholar 

  237. Jia X, Chen X, Xu Y, Han X, Xu Z. Tracing transport of chitosan nanoparticles and molecules in Caco-2 cells by fluorescent labeling. Carbohydr Polym. 2009;78(2):323–9.

    Google Scholar 

  238. Liu YL, Wu YH, Tsai WB, Tsai CC, Chen WS, Wu CS. Core–shell silica@chitosan nanoparticles and hollow chitosan nanospheres using silica nanoparticles as templates: Preparation and ultrasound bubble application. Carbohydr Polym. 2011;84(2):770–4.

    Article  CAS  Google Scholar 

  239. Sharma K, Somavarapu S, Colombani A, Govind N, Taylor KMG. Crosslinked chitosan nanoparticle formulations for delivery from pressurized metered dose inhalers. Eur J Pharm Biopharm. 2012;81(1):74–81.

    Article  CAS  Google Scholar 

  240. Chen CY, Chang JC, Chen AH. Competitive biosorption of azo dyes from aqueous solution on the templated crosslinked-chitosan nanoparticles. J Hazard Mater. 2011;185(1):430–41.

    Article  CAS  Google Scholar 

  241. Pan AW, Wu BB, Wu JM. Chitosan nanoparticles crosslinked by glycidoxypropyltrimethoxysilane for pH triggered release of protein. Chin Chem Lett. 2009;20(1):79–83.

    Article  CAS  Google Scholar 

  242. Csaba N, Köping-Höggård M, Alonso MJ. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm. 2009;382(1–2):205–14.

    Article  CAS  Google Scholar 

  243. Papadimitriou SA, Achilias DS, Bikiaris DN. Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems. Int J Pharm. 2012;430(1–2):318–27.

    Article  CAS  Google Scholar 

  244. Soares KSR, et al. Serum production against Tityus serrulatus scorpion venom using cross-linked chitosan nanoparticles as immunoadjuvant. Toxicon. 2012;60(8):1349–54.

    Article  CAS  Google Scholar 

  245. Sarmento B, Mazzaglia D, Bonferoni MC, Neto AP, Monteiro MC, Seabra V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr Polym. 2011;84(3):919–25.

    Article  CAS  Google Scholar 

  246. Ridolfi DM, Marcato PD, Justo GZ, Cordi L, Machado D, Durán N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B Biointerfaces. 2012;93:36–40.

    Article  CAS  Google Scholar 

  247. Fonte P, Andrade F, Araújo F, Andrade C, Neves J, Sarmento B. Chapter fifteen - Chitosan-Coated Solid Lipid Nanoparticles for Insulin Delivery. Methods Enzymol. 2012;508:295–314.

    Article  CAS  Google Scholar 

  248. Ying XY, Cui D, Yu L, Du YZ. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr Polym. 2011;84(4):1357–64.

    Article  CAS  Google Scholar 

  249. Maestrelli F, Garcia-Fuentes M, Mura P, Alonso MJ. A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur J Pharm Biopharm. 2006;63(2):79–86.

    Article  CAS  Google Scholar 

  250. Jingou J, Shilei H, Weiqi L, Danjun W, Tengfei W, Yi X. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids Surf B Biointerfaces. 2011;83(1):103–7.

    Google Scholar 

  251. Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm. 2010;393(1–2):213–9.

    Article  CAS  Google Scholar 

  252. Fan L, Zhang Y, Luo C, Lu F, Qiu H, Sun M. Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int J Biol Macromol. 2012;50(2):444–50.

    Article  CAS  Google Scholar 

  253. Fan L, Li M, Lv Z, Sun M, Luo C, Lu F, Qiu H. Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids Surf B Biointerfaces. 2012;95:42–9.

    Article  CAS  Google Scholar 

  254. Sadighi A, Ostad SN, Rezayat SM, Foroutan M, Faramarzi MA, Dorkoosh FA. Mathematical modelling of the transport of hydroxypropyl-β-cyclodextrin inclusion complexes of ranitidine hydrochloride and furosemide loaded chitosan nanoparticles across a Caco-2 cell monolayer. Int J Pharm. 2012;422(1–2):479–88.

    Article  CAS  Google Scholar 

  255. Lian W, Huang J, Yu J, Zhang X, Lin Q, He X, Xing X, Liu S. A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control. 2012;26(2):620–7.

    Google Scholar 

  256. Mazzaferro S, Bouchemal K, Skanji R, Gueutin C, Chacun H, Ponchel G. Intestinal permeation enhancement of docetaxel encapsulated into methyl-β-cyclodextrin/poly(isobutylcyanoacrylate)nanoparticles coated with thiolated chitosan. J Control Release. 2012;162(3):568–74.

    Article  CAS  Google Scholar 

  257. Wang X, Chen C, Huo D, Qian H, Ding Y, Hu Y, Jiang X. Synthesis of β-cyclodextrin modified chitosan–poly(acrylic acid) nanoparticles and use as drug carriers. Carbohydr Polym. 2012;90(1):361–9.

    Article  CAS  Google Scholar 

  258. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, Alonso MJ. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm. 2010;75(1):26–32.

    Article  CAS  Google Scholar 

  259. Krauland AH, Alonso MJ. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm. 2007;340(1–2):134–42.

    Article  CAS  Google Scholar 

  260. Mahmoud AA, El-Feky GS, Kamel R, Awad GEA. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm. 2011;413(1–2):229–36.

    Article  CAS  Google Scholar 

  261. Khalil SKH, El-Feky GS, El-Banna ST, Khalil WA. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym. 2012;90(3):1244–53.

    Article  CAS  Google Scholar 

  262. Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. Eur J Pharm Biopharm. 2009;71(2):257–63.

    Article  CAS  Google Scholar 

  263. Sonvico F, et al. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int J Pharm. 2006;324(1):67–73.

    Article  CAS  Google Scholar 

  264. Hafner A, Lovrić J, Voinovich D, Filipović-Grčić J. Melatonin-loaded lecithin/chitosan nanoparticles: Physicochemical characterisation and permeability through Caco-2 cell monolayers. Int J Pharm. 2009;381(2):205–13.

    Article  CAS  Google Scholar 

  265. Şenyiğit T, Sonvico F, Barbieri S, Özer Ö, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release. 2010;142(3):368–73.

    Article  CAS  Google Scholar 

  266. Makhlof A, Werle M, Tozuka Y, Takeuchi H. Nanoparticles of glycol chitosan and its thiolated derivative significantly improved the pulmonary delivery of calcitonin. Int J Pharm. 2010;397(1–2):92–5.

    Article  CAS  Google Scholar 

  267. Quiñones JP, Gothelf KV, Kjems J, Caballero ÁMH, Schmidt C, Covas CP. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release. Carbohydr Polym. 2012;88(4):1373–7.

    Article  CAS  Google Scholar 

  268. Alex SM, Rekha MR, Sharma CP. Spermine grafted galactosylated chitosan for improved nanoparticle mediated gene delivery. Int J Pharm. 2011;410(1–2):125–37.

    Article  CAS  Google Scholar 

  269. Jiang H, Wu H, Xu Y, Wang J, Zeng Y. Preparation of galactosylated chitosan/tripolyphosphate nanoparticles and application as a gene carrier for targeting SMMC7721 cells. J Biosci Bioeng. 2011;111(6):719–24.

    Article  CAS  Google Scholar 

  270. Wang Q, et al. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomed Nanotech Biol Med. 2010;6(2):371–81.

    Article  CAS  Google Scholar 

  271. Zheng D, et al. Galactosylated chitosan nanoparticles for hepatocyte-targeted delivery of oridonin. Int J Pharm. 2012;436(1–2):379–86.

    Article  CAS  Google Scholar 

  272. Kim TH, Park IK, Nah JW, Choi YJ, Cho CS. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials. 2004;25(17):3783–92.

    Article  CAS  Google Scholar 

  273. Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym. 2011;83(2):452–61.

    Google Scholar 

  274. Feng BH, Peng LF. Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym. 2012;88(2):576–82.

    Google Scholar 

  275. Hsiao MH, Tung TH, Hsiao CS, Liu DM. Nano-hybrid carboxymethyl-hexanoyl chitosan modified with (3-aminopropyl)triethoxysilane for camptothecin delivery. Carbohydr Polym. 2012;89(2):632–9.

    Article  CAS  Google Scholar 

  276. Duan J, et al. Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate)nanoparticles. Int J Pharm. 2010;400(1–2):211–20.

    Article  CAS  Google Scholar 

  277. Duan J, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles. Int J Pharm. 2012;426(1–2):193–201.

    Article  CAS  Google Scholar 

  278. Mazzarino L, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci. 2012;370(1):58–66.

    Article  CAS  Google Scholar 

  279. Anitha A, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym. 2011;84(3):1158–64.

    Article  CAS  Google Scholar 

  280. Akhtar F, Kar S. Oral delivery of curcumin bound to chitosan nanoparticles cures mice from Plasmodium yoelii infection. J Biotechnol. 2010;150(Suppl):93.

    Google Scholar 

  281. Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotech Biol Med. 2010;6(1):153–60.

    Article  CAS  Google Scholar 

  282. Yadav A, Lomash V, Samim M, Flora SJS. Curcumin encapsulated in chitosan nanoparticles: A novel strategy for the treatment of arsenic toxicity. Chem Biol Interact. 2012;199(1):49–61.

    Article  CAS  Google Scholar 

  283. Holzerny P, Ajdini B, Heusermann W, Bruno K, Schuleit M, Meinel L, Keller M. Biophysical properties of chitosan/siRNA polyplexes: Profiling the polymer/siRNA interactions and bioactivity. J Control Release. 2012;157(2):297–304.

    Article  CAS  Google Scholar 

  284. Yang Y, et al. Chitosan/VEGF-sIRNA nanoparticle for gene silencing. J Control Release. 2011;152 Suppl 1:e160–1.

    Article  CAS  Google Scholar 

  285. Liu X, et al. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials. 2007;28(6):1280–8.

    Article  CAS  Google Scholar 

  286. Park S, Lee SK, Lee KY. Oligoarginine-modified chitosan for siRNA delivery. J Control Release. 2011;152(Supplement 1):165–6.

    Article  CAS  Google Scholar 

  287. Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm. 2010;399(1–2):1–11.

    Article  CAS  Google Scholar 

  288. Nawroth I, et al. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis. Radiother Oncol. 2010;97(1):143–8.

    Article  CAS  Google Scholar 

  289. Katas H, Alpar O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216–25.

    Article  CAS  Google Scholar 

  290. Lee DW, Yun KS, Ban HS, Choe W, Lee SK, Lee KY. Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release. 2009;139(2):146–52.

    Article  CAS  Google Scholar 

  291. Huh MS, et al. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J Control Release. 2010;144(2):134–43.

    Article  CAS  Google Scholar 

  292. Malmo J, Sørgård H, Vårum KM, Strand SP. siRNA delivery with chitosan nanoparticles: Molecular properties favoring efficient gene silencing. J Control Release. 2012;158(2):261–8.

    Article  CAS  Google Scholar 

  293. Lee JY, et al. Prolonged gene silencing by siRNA/chitosan-g-deoxycholic acid polyplexes loaded within biodegradable polymer nanoparticles. J Control Release. 2012;162(2):407–13.

    Google Scholar 

  294. Maya S, et al. Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol. 2012;51(4):392–9.

    Google Scholar 

  295. Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids Surf B Biointerfaces. 2010;76(1):292–7.

    Article  CAS  Google Scholar 

  296. Lu H, et al. Inhibitory effects of trolox-encapsulated chitosan nanoparticles on tert-butylhydroperoxide induced RAW264.7 apoptosis. Biomaterials. 2012;33(33):8517–28.

    Article  CAS  Google Scholar 

  297. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: In vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157(3):383–90.

    Article  CAS  Google Scholar 

  298. Grenha A, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25(4–5):427–37.

    Article  CAS  Google Scholar 

  299. Harris R, Lecumberri E, Mateos-Aparicio I, Mengíbar M, Heras A. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym. 2011;84(2):803–6.

    Article  CAS  Google Scholar 

  300. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces. 2012;90:21–7.

    Article  CAS  Google Scholar 

  301. Chang YC, Dong-Hwang C. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interface Sci. 2005;283(2):446–51.

    Article  CAS  Google Scholar 

  302. Vinh TH, Tran LD, Ba CT, Vu HD, Nguyen TN, Pham DG, Nguyen PX. Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan-based silver nanoparticles. Colloids Surf A Physicochem Eng Asp. 2010;360(1–3):32–40.

    Google Scholar 

  303. Loh JW, Saunders M, Lim LY. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells. Toxicol Appl Pharmacol. 2012;262(3):273–82.

    Article  CAS  Google Scholar 

  304. Nafee N, Schneider M, Schaefer UF, Lehr CM. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm. 2009;381(2):130–9.

    Article  CAS  Google Scholar 

  305. Haidar ZS, Hamdy RC, Tabrizian M. Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 2008;29(9):1207–15.

    Google Scholar 

  306. Silva JN, Bezerra MC, Farias PMA. Novel and simple route for the synthesis of core–shell chitosan–gold nanocomposites. Mater Chem Phys. 2012;135(1):63–7.

    Google Scholar 

  307. Chen L, Subirade M. Chitosan/β-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials. 2005;26(30):6041–53.

    Article  CAS  Google Scholar 

  308. Wen Y, Tan Z, Sun F, Sheng L, Zhang X, Yao F. Synthesis and characterization of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core–shell nanoparticles. Mater Sci Eng C. 2012;32(7):2026–36.

    Google Scholar 

  309. Zamani S, Khoee S. Preparation of core–shell chitosan/PCL-PEG triblock copolymer nanoparticles with ABA and BAB morphologies: Effect of intraparticle interactions on physicochemical properties. Polymer. 2012;53:5723–36.

    Article  CAS  Google Scholar 

  310. Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly(isobutyl cyanoacrylate) core–shell nanoparticles. Int J Pharm. 2007;338(1–2):284–90.

    Article  CAS  Google Scholar 

  311. Inphonlek S, Pimpha N, Sunintaboon P. Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property. Colloids Surf B Biointerfaces. 2010;77(2):219–26.

    Article  CAS  Google Scholar 

  312. Moghaddam FA, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. Nanomed Nanotech Biol Med. 2009;5(2):208–15.

    Article  CAS  Google Scholar 

  313. Bravo-Osuna I, Ponchel G, Vauthier C. Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles. Eur J Pharm Sci. 2007;30(2):143–54.

    Article  CAS  Google Scholar 

  314. Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 2007;28(13):2233–43.

    Article  CAS  Google Scholar 

  315. Bravo-Osuna I, Vauthier C, Chacun H, Ponchel G. Specific permeability modulation of intestinal paracellular pathway by chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur J Pharm Biopharm. 2008;69(2):436–44.

    Google Scholar 

  316. Lin A, Liu Y, Huang Y, Sun J, Wu Z, Zhang X, Ping Q. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int J Pharm. 2008;359(1–2):247–53.

    Article  CAS  Google Scholar 

  317. Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm. 2008;354(1–2):235–41.

    Article  CAS  Google Scholar 

  318. Sanoj Rejinold N, Muthunarayanan M, Muthuchelian K, Chennazhi KP, Nair SV, Jayakumar R. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 2011;84(1):407–16.

    Article  CAS  Google Scholar 

  319. Moura MR, Aouada FA, Avena-Bustillos RJ, McHugh TH, Krochta JM, Luiz HC. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng. 2009;92(4):448–53.

    Google Scholar 

  320. Abreu FOMS, Oliveira EF, Paula HCB, Paula RCM. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym. 2012;89(4):1277–82.

    Article  CAS  Google Scholar 

  321. Garcia-Fuentes M, Prego C, Torres D, Alonso MJ. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 2005;25(1):133–43.

    Article  CAS  Google Scholar 

  322. Shahnaz G, et al. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: Bioavailability and pharmacokinetic characterization. Int J Pharm. 2012;428(1–2):164–70.

    Article  CAS  Google Scholar 

  323. Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the plasma exposure of (−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur J Pharm Sci. 2011;44(3):422–6.

    Article  CAS  Google Scholar 

  324. Jiang GB, Lin ZT, Xu XJ, Zhang H, Song K. Stable nanomicelles based on chitosan derivative: In vitro antiplatelet aggregation and adhesion properties. Carbohydr Polym. 2012;88(1):232–8.

    Google Scholar 

  325. Dudhani AR, Kosaraju SL. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydr Polym. 2010;81(2):243–51.

    Article  CAS  Google Scholar 

  326. Zambito Y, Felice F, Fabiano A, Stefano RD, Colo GD. Mucoadhesive nanoparticles made of thiolated quaternary chitosan crosslinked with hyaluronan. Carbohydr Polym. 2013;92(1):33–9.

    Article  CAS  Google Scholar 

  327. Pan Y, Li Y, Zhao H, Zheng J, Xu H, Wei G, Hao J, Cui F. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249(1–2):139–47.

    Article  CAS  Google Scholar 

  328. Plapied L, Vandermeulen G, Vroman B, Préat V, Rieux A. Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery. Int J Pharm. 2010;398(1–2):210–8.

    Article  CAS  Google Scholar 

  329. Meng J, Sturgis TF, Youan BB. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci. 2011;44(1–2):57–67.

    Google Scholar 

  330. Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62(1):28–41. Review Article.

    Google Scholar 

  331. Menon D, Thomas RT, Narayanan S, Maya S, Jayakumar R, Hussain F, Lakshmanan VK, Nair SV. A novel chitosan/polyoxometalate nano-complex for anti-cancer applications. Carbohydr Polym. 2011;84(3):887–93.

    Article  CAS  Google Scholar 

  332. Babu VN, Kannan S. Enhanced delivery of baicalein using cinnamaldehyde cross-linked chitosan nanoparticle inducing apoptosis. Int J Biol Macromol. 2012;51(5):1103–8.

    Article  CAS  Google Scholar 

  333. Grenha A, Grainger CI, Dailey LA, Seijo B, Martin GP, Remuñán-López C. Forbes B Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur J Pharm Sci. 2007;31(2):73–84.

    Article  CAS  Google Scholar 

  334. Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol. 2011;670(2–3):372–83.

    Article  CAS  Google Scholar 

  335. Guan M, Zhou Y, Zhu QL, Liu Y, Bei YY, Zhang XN, Zhang Q. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomed Nanotech Biol Med. 2012;8(7):1172–81.

    Google Scholar 

  336. Yang R, Shim WS, Cui FD, Cheng G, Han X, Jin QR, Kim DD, Chung SJ, Shim CK. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm. 2009;371(1–2):142–7.

    Article  CAS  Google Scholar 

  337. Arya G, Vandana M, Acharya S, Sahoo SK. Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomed Nanotech Biol Med. 2011;7(6):859–70.

    Article  CAS  Google Scholar 

  338. Zhang J, Chen XG, Peng WB, Liu CS. Uptake of oleoyl-chitosan nanoparticles by A549 cells. Nanomed Nanotech Biol Med. 2008;4(3):208–14.

    Article  CAS  Google Scholar 

  339. Shen JM, Tang WJ, Zhang XL, Chen T, Zhang HX. A novel carboxymethyl chitosan-based folate/Fe3O4/CdTe nanoparticle for targeted drug delivery and cell imaging. Carbohydr Polym. 2012;88(1):239–49.

    Article  CAS  Google Scholar 

  340. Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73(1):44–54.

    Article  CAS  Google Scholar 

  341. Tian Q, Wang XH, Wang W, Zhang CN, Wang P, Yuan Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomed Nanotech Biol Med. 2012;8(6):870–9.

    Article  CAS  Google Scholar 

  342. Tian Q, et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010;31(17):4748–56.

    Article  CAS  Google Scholar 

  343. Qi L, Xu Z, Chen M. In vitro and in vivo suppression of hepatocellular carcinoma growth by chitosan nanoparticles. Eur J Cancer. 2007;43(1):184–93.

    Article  CAS  Google Scholar 

  344. Lee CM, et al. SPION-loaded chitosan–linoleic acid nanoparticles to target hepatocytes. Int J Pharm. 2009;371(1–2):163–9.

    Article  CAS  Google Scholar 

  345. Loh JW, Yeoh G, Saunders M, Lim LY. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicol Appl Pharmacol. 2010;249(2):148–57.

    Article  CAS  Google Scholar 

  346. Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128(1):23–31.

    Article  CAS  Google Scholar 

  347. Chung Y, Kim JC, Kim YH, Tae G, Lee SY, Kim K, Kwon IC. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. J Control Release. 2010;143(3):374–82.

    Article  CAS  Google Scholar 

  348. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74(1–3):317–23.

    Article  CAS  Google Scholar 

  349. Chung KD, Jeong YI, Chung CW, Kim DH, Kang DH. Anti-tumor activity of all-trans retinoic acid-incorporated glycol chitosan nanoparticles against HuCC-T1 human cholangiocarcinoma cells. Int J Pharm. 2012;422(1–2):454–61.

    Article  CAS  Google Scholar 

  350. Qi L, Xu Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg Med Chem Lett. 2006;16:4243–5.

    Article  CAS  Google Scholar 

  351. Xu J, Ma L, Liu Y, Xu F, Nie J, Ma G. Design and characterization of antitumor drug paclitaxel-loaded chitosan nanoparticles by W/O emulsions. Int J Biol Macromol. 2012;50(2):438–43.

    Article  CAS  Google Scholar 

  352. Li F, Li J, Wen X, Zhou S, Tong X, Su P, Li H, Shi D. Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: an in vitro study. Mater Sci Eng C. 2009;29(8):2392–7.

    Article  CAS  Google Scholar 

  353. Luo H, Li J, Chen X. Antitumor effect of N-succinyl-chitosan nanoparticles on K562 cells. Biomed Pharmacother. 2010;64(8):521–6.

    Article  CAS  Google Scholar 

  354. Wang J, Tao X, Zhang Y, Wei D, Ren Y. Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles. Biomaterials. 2010;31(15):4426–33.

    Article  CAS  Google Scholar 

  355. Na JH, et al. Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency. J Control Release. 2012;163(1):2–9.

    Article  CAS  Google Scholar 

  356. Trapani A, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm. 2011;419(1–2):296–307.

    Article  CAS  Google Scholar 

  357. Wang S, Jiang T, MaM HY, Zhang J. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Int J Pharm. 2010;386(1–2):249–55.

    Google Scholar 

  358. Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 2008;70(3):735–40.

    Article  CAS  Google Scholar 

  359. Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni J, Ali J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47(1):6–15.

    Google Scholar 

  360. Tokumitsu H, Hiratsuka J, Sakurai Y, Kobayashi T, Ichikawa H, Fukumori Y. Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett. 2000;150(2):177–82.

    Article  CAS  Google Scholar 

  361. Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm. 2002;53(1):57–63.

    Article  CAS  Google Scholar 

  362. Yoo MK, et al. Targeted delivery of chitosan nanoparticles to Peyer’s patch using M cell-homing peptide selected by phage display technique. Biomaterials. 2010;31(30):7738–47.

    Article  CAS  Google Scholar 

  363. Hu B, Ting Y, Zeng X, Huang Q. Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr Polym. 2012;89(2):362–70.

    Article  CAS  Google Scholar 

  364. Garg NK, Dwivedi P, Campbell C, Tyagi RK. Site specific/targeted delivery of gemcitabine through anisamide anchored chitosan/poly ethylene glycol nanoparticles: an understanding of lung cancer therapeutic intervention. Eur J Pharm Sci. 2012;47(5):1006–14.

    Google Scholar 

  365. Taetz S, et al. The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2′-O-methyl-RNA directed against telomerase in lung cancer cells. Eur J Pharm Biopharm. 2009;72(2):358–69.

    Article  CAS  Google Scholar 

  366. Kim MK, Lee JS, Lee HG. Ascorbyl palmitate-loaded chitosan nanoparticles: Characteristic and polyphenol oxidase inhibitory activity. Colloids Surf B Biointerfaces. 2012;103:391–4.

    Article  CAS  Google Scholar 

  367. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428(1–2):143–51.

    Article  CAS  Google Scholar 

  368. Choi M, et al. Chitosan nanoparticles show rapid extrapulmonary t distribution and excretion with mild pulmonary inflammation to mice. Toxicol Lett. 2010;199(2):144–52.

    Article  CAS  Google Scholar 

  369. Jafarinejad S, Gilani K, Moazeni E, Ghazi-Khansari M, Rouholamini AN, Mohajel N. Development of chitosan-based nanoparticles for pulmonary delivery of itraconazole as dry powder formulation. Powder Technol. 2012;222:65–70.

    Article  CAS  Google Scholar 

  370. Derakhshandeh K, Fathi S. Role of chitosan nanoparticles in the oral absorption of Gemcitabine. Int J Pharm. 2012;437(1–2):172–7.

    Article  CAS  Google Scholar 

  371. Woranuch S, Yoksan R. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr Polym. 2012;96(2):578–85.

    Google Scholar 

  372. Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur J Pharm Sci. 2010;41(2):219–25.

    Article  CAS  Google Scholar 

  373. Zhi J, Wang Y, Luo G. Adsorption of diuretic furosemide onto chitosan nanoparticles prepared with a water-in-oil nanoemulsion system. React Funct Polym. 2005;65(3):249–57.

    Article  CAS  Google Scholar 

  374. Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces. 2011;84(1):163–71.

    Article  CAS  Google Scholar 

  375. Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives: A comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm. 2007;342(1–2):240–9.

    Google Scholar 

  376. Du YZ, Wang L, Dong Y, Yuan H, Hu FQ. Characteristics of paclitaxel-loaded chitosan oligosaccharide nanoparticles and their preparation by interfacial polyaddition in O/W miniemulsion system. Carbohydr Polym. 2010;79(4):1034–9.

    Article  CAS  Google Scholar 

  377. Janes KA, Fresneau MP, Marazuela A, Fabra A, Marı́a José A. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73(2–3):255–67.

    Article  CAS  Google Scholar 

  378. Bulmer C, Margaritis A, Xenocostas A. Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochem Eng J. 2012;68:61–9.

    Article  CAS  Google Scholar 

  379. Li P, Wang Y, Peng Z, She F, Kong L. Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydr Polym. 2011;85(3):698–704.

    Article  CAS  Google Scholar 

  380. Cadete A, Figueiredo L, Lopes R, Calado CCR, Almeida AJ, Gonçalves LMD. Development and characterization of a new plasmid delivery system based on chitosan–sodium deoxycholate nanoparticles. Eur J Pharm Sci. 2012;45(4):451–8.

    Article  CAS  Google Scholar 

  381. Wilson B, Samanta MK, Santhi K, Sampath Kumar KP, Ramasamy M, Suresh B. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomed Nanotech Biol Med. 2010;6(1):144–52.

    Article  CAS  Google Scholar 

  382. Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK, Nah JW. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int J Pharm. 2006;319(1–2):130–8.

    Article  CAS  Google Scholar 

  383. Ajun W, Yan S, Li G, Huili L. Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study. Carbohydr Polym. 2009;75(4):566–74.

    Article  CAS  Google Scholar 

  384. Guan J, et al. Optimized Preparation of Levofloxacin-loaded Chitosan Nanoparticles by Ionotropic Gelation. Phys Procedia. 2011;22:163–9.

    Article  CAS  Google Scholar 

  385. Shi Z, Neoh KG, Kang ET, Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials. 2006;27(11):2440–9.

    Article  CAS  Google Scholar 

  386. Ji J, Hao S, Wu D, Huang R, Xu Y. Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydr Polym. 2011;85(4):803–8.

    Article  CAS  Google Scholar 

  387. Tang DW, et al. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids. 2013;30(1):33–41.

    Article  CAS  Google Scholar 

  388. Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan–insulin nanoparticles in diabetic rats. Int J Pharm. 2005;293(1–2):271–80.

    Article  CAS  Google Scholar 

  389. Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog Polym Sci. 2012;37(11):1457–75. Review Article.

    Google Scholar 

  390. Huang X, Du YZ, Yuan H, Hu FQ. Preparation and pharmacodynamics of low-molecular-weight chitosan nanoparticles containing insulin. Carbohydr Polym. 2009;76(3):368–73.

    Article  CAS  Google Scholar 

  391. Sarmento B, Ferreira DC, Jorgensen L, Weert M. Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm. 2007;65(1):10–7.

    Article  CAS  Google Scholar 

  392. Mohammadpourdounighi N, Behfar A, Ezabadi A, Hosein Z, Heydari M. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom. Nanomed Nanotech Biol Med. 2010;6(1):137–43.

    Article  CAS  Google Scholar 

  393. Campos AMD, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224(1–2):159–68.

    Article  Google Scholar 

  394. Valerio SG, Alves JS, Klein MP, Rodrigues RC, Hertz PF. High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr Polym. 2012;92(1):462–8.

    Article  CAS  Google Scholar 

  395. Luo XL, Xu JJ, Zhang Q, Yang GJ, Chen HY. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosen Bioelectron. 2005;21(1):190–6.

    Article  CAS  Google Scholar 

  396. Zhang H, Tao Y, Guo J, Hu Y, Su Z. Hypolipidemic effects of chitosan nanoparticles in hyperlipidemia rats induced by high fat diet. Int Immunopharmacol. 2011;11(4):457–61.

    Article  CAS  Google Scholar 

  397. Brunel F, Gueddari NEE, Moerschbachers BM. Complexation of Copper(II) with Chitosan Nanogels: towards Control of Microbial Growth. 2012. Carbohydrate Polymers.

    Google Scholar 

  398. Yoksan R, Chirachanchai S. Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C. 2010;30(6):891–7.

    Article  CAS  Google Scholar 

  399. Li LH, Deng JC, Deng HR, Liu ZL, Li XL. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem Eng J. 2010;160(1):378–82.

    Article  CAS  Google Scholar 

  400. Arockianathan PM, Sekar S, Kumaran B, Sastry TP. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol. 2012;50(4):939–46.

    Article  CAS  Google Scholar 

  401. Hu H, Xin JH, Hu H, Chan A, He L. Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydr Polym. 2013;91(1):305–13.

    Article  CAS  Google Scholar 

  402. Wang BL, Liu XS, Ji Y, Ren KF, Ji J. Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydr Polym. 2012;90(1):8–15.

    Article  CAS  Google Scholar 

  403. Li G, Huang K, Jiang Y, Ding P, Yang D. Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles. Biochem Eng J. 2008;40(3):408–14.

    Article  CAS  Google Scholar 

  404. Zheng H, Zhang X, Yin Y, Xiong F, Gong X, Zhu Z, Lu B, Xu P. In vitro characterization, and in vivo studies of crosslinked lactosaminated carboxymethyl chitosan nanoparticles. Carbohydr Polym. 2011;84(3):1048–53.

    Article  CAS  Google Scholar 

  405. Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra A. Chitosan nanoparticles cross-linked with glutaraldehyde to become ultrafine nanoparticles: Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm. 2002;243(1–2):93–105.

    Google Scholar 

  406. Tripathy S, Das S, Chakraborty SP, Sahu SK, Pramanik P, Roy S. Synthesis, characterization of chitosan–tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: A dose and duration dependent approach. Int J Pharm. 2012;434(1–2):292–305.

    Article  CAS  Google Scholar 

  407. Haque S, Md S, Fazil M, Kumar M, Sahni JK, Ali J, Baboota S. Venlafaxine loaded chitosan NPs for brain targeting: Pharmacokinetic and pharmacodynamic evaluation. Carbohydr Polym. 2012;89(1):72–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Chitosan Based Nanomaterials and Its Applications. In: Systems for Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-41926-8_3

Download citation

Publish with us

Policies and ethics