Skip to main content

Comprehensible Enzyme Function Classification Using Reactive Motifs with Negative Patterns

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9729))

  • 3015 Accesses

Abstract

The main objective of this research work is to build a comprehensible enzyme function classification by using high-coverage and high-precision reactive motifs. Reactive motifs are directly extracted from the protein active and binding sites. Main advantage of the reactive motifs is their high-coverage, however their generalization make them over-generalized with low-precision quality. In this paper, a method for generating reactive motifs with negative patterns is proposed. Reactive motifs with negative patterns are able to control the level of motif generalization. As result, non over-generalized reactive motifs with high-precision are generated. Each of the reactive motifs is associated with a specific enzyme function. They can directly predict enzyme function of an unknown protein sequence. Without use of a complex classification model, set of voting methods are proposed and used to construct a comprehensible enzyme function classification. Essential clues of the enzyme mechanism are provided to the biologist end-users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freitas, A.A., Wieser, D.C., Apweiler, R.: On the importance of comprehensible classification models for protein function prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics 7(1), 172–182 (2010)

    Article  Google Scholar 

  2. Kunik, V., Solan, Z., Edelman, S., Ruppin, E., Horn, D.: Motif extraction and protein classification. In: CSB, pp. 80–85. IEEE Computer Society (2005)

    Google Scholar 

  3. Sander, C., Schneider, R.: Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins: Structure, Function, and Genetics 9(1), 56–68 (1991)

    Article  Google Scholar 

  4. Eidhammer, I., Jonassen, I., Taylor, W.R.: Structure comparison and structure patterns. Journal of Computational Biology 7, 685–716 (1999)

    Article  Google Scholar 

  5. Huang, J.Y., Brutlag, D.L.: The emotif database. Nucleic Acids Research 29(1), 202–204 (2001)

    Article  Google Scholar 

  6. Bennett, S.P., Lu, L., Brutlag, D.L.: 3matrix and 3motif: a protein structure visualization system for conserved sequence motifs. Nucleic Acids Research 31(13), 3328–3332 (2003)

    Article  Google Scholar 

  7. Waiyamai, K., Liewlom, P., Kangkachit, T., Rakthanmanon, T.: Concept lattice–based mutation control for reactive motifs discovery. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 767–776. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Kangkachit, T., Waiyamai, K., Lenca, P.: Enzyme classification using reactive motifs. I. J. Functional Informatics and Personalised Medicine 4(3/4), 243–258 (2014)

    Article  Google Scholar 

  9. Bairoch, A.: The prosite dictionary of sites and patterns in proteins, its current status. Nucleic Acids Research 21(13), 3097–3103 (1993)

    Article  Google Scholar 

  10. Bork, P., Koonin, E.: Protein sequence motifs. Curr. Opin. Struct. Biol. 6(3), 366–376 (1996)

    Article  Google Scholar 

  11. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: COLT, pp. 144–152 (1992)

    Google Scholar 

  12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schomburg, D.: BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Research 32(Database issue), D431–D433 (2004)

    Article  Google Scholar 

  14. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences 89(22), 10915–10919 (1992)

    Article  Google Scholar 

  15. Smith, H.O., Annau, T.M., Chandrasegaran, S.: Finding sequence motifs in groups of functionally related proteins. Proceedings of the National Academy of Sciences 87(2), 826–830 (1990)

    Article  Google Scholar 

  16. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D.: Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31(13), 3497–3500 (2003)

    Article  Google Scholar 

  17. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.L.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Research 32(Database–Issue), 115–119 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanapat Kangkachit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kangkachit, T., Waiyamai, K. (2016). Comprehensible Enzyme Function Classification Using Reactive Motifs with Negative Patterns. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2016. Lecture Notes in Computer Science(), vol 9729. Springer, Cham. https://doi.org/10.1007/978-3-319-41920-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41920-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41919-0

  • Online ISBN: 978-3-319-41920-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics