Advertisement

Determination of the Stable Crack Growth by Means of the Fluorescence Adsorption-Contrast Method (3D-FAC Method)

  • M. Kroll
  • B. Langer
  • W. Grellmann
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

The aim of this study was to develop new opportunities to measure crack resistance curves at conditions of high ductility of reinforced polyamide 6 (PA6) compounds with high glass fibre content. The addition of toughening modifiers in glass fibre-reinforced compounds, the hygroscopic behaviour of polyamides as well as raised temperatures limit the validity range of conventional toughness evaluation with the experimental methods of linear elastic fracture mechanics and the J-integral method. The determination of J-crack resistance (R)-curves is necessary for a complete toughness evaluation. The fluorescence dyeing technique showed to be an efficient, accurate and reliable method to enhance the measurement of stable crack growth portions on roughly structured fracture surfaces. Within the study a fractional factorial statistical design of experiments was used to prove the reliability and accuracy of the method. Fluorescence microscopy has its definite advantages compared to light microscopy or scanning electron microscopy (SEM) especially when it is applied by use of a 3D digital microscope with depth from defocus which was used for the study. Finally additional information about the toughness behaviour of highly reinforced PA6 compounds with different amounts of elastomeric modifier could be revealed by means of the newly developed fluorescence adsorption-contrast method (3D-FAC method).

References

  1. 1.
    Langer, B.: Bruchmechanische Bewertung von Polyamid-Werkstoffen. Logos Verlag, Berlin (1998)Google Scholar
  2. 2.
    Kroll, M., Langer, B., Schumacher, S., Grellmann, W.: The influence of carbon black batches on the fracture behavior of glass fiber reinforced PA6/PA66 blends. J. Appl. Polym. Sci. 116, 610–618 (2010)Google Scholar
  3. 3.
    Nase, M., Langer, B., Schumacher, S., Grellmann, W.: Toughness optimization of glass-fiber reinforced PA6/PA66-based composites: effect of matrix composition and colorants. J. Appl. Polym. Sci. 111, 2245–2252 (2009)CrossRefGoogle Scholar
  4. 4.
    Bethge, I., Reincke, K., Seidler, S., Grellmann, W.: Influence of modifier content and temperature on toughness behaviour of polyamide. In: Grellmann, W., Seidler, S. (eds.) Deformation and Fracture Behaviour of Polymers. Springer, Berlin (2001), pp. 242–256Google Scholar
  5. 5.
    Muratoglu, O.K., Argon, A.S., Cohen, R.E., Weinberg, M.: Microstructural processes of fracture of rubber-modified polyamides. Polymer 36, 4771–4786 (1995)CrossRefGoogle Scholar
  6. 6.
    Araújo Jr., E.M., Hage, E., Carvalho, A.J.F.: Effect of compatibilizer in acrylonitrile–butadiene–styrene toughened nylon 6 blends: Ductile–brittle transition temperature. J. Appl. Polym. Sci. 90, 2643–2647 (2003)CrossRefGoogle Scholar
  7. 7.
    Kayano, Y., Keskkula, H., Paul, D.R.: Fracture behaviour of some rubber-toughened nylon 6 blends. Polymer 39, 2835–2845 (1998)CrossRefGoogle Scholar
  8. 8.
    Kayano, Y., Keskkula, H., Paul, D.R.: Evaluation of the fracture behaviour of nylon 6/SEBS-g-MA blends. Polymer 38, 1885–1902 (1997)CrossRefGoogle Scholar
  9. 9.
    Burgisi, G., Paternoster, M., Peduto, N., Saraceno, A.: Toughness enhancement of polyamide 6 modified with different types of rubber: the influence of internal rubber cavitation. J. Appl. Polym. Sci. 66, 777–787 (1997)CrossRefGoogle Scholar
  10. 10.
    Oshinski, A.J., Keskkula, H., Paul, D.R.: The role of matrix molecular weight in rubber toughened nylon 6 blends: 1. Morphology. Polymer 37, 4891–4907 (1996)Google Scholar
  11. 11.
    Oshinski, A.J., Keskkula, H., Paul, D.R.: The role of matrix molecular weight in rubber toughened nylon 6 blends: 2. Room temperature Izod impact toughness. Polymer 37, 4909–4918 (1996)CrossRefGoogle Scholar
  12. 12.
    Oshinski, A.J., Keskkula, H., Paul, D.R.: The role of matrix molecular weight in rubber toughened nylon 6 blends: 3. Ductile–brittle transition temperature. Polymer 37, 4919–4928 (1996)CrossRefGoogle Scholar
  13. 13.
    Laura, D.M., Keskkula, H., Barlow, J.W., Paul, D.R.: Effect of rubber particle size and rubber type on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer 44, 3347–3361 (2003)CrossRefGoogle Scholar
  14. 14.
    Ching, E.C.Y., Li, R.K.Y., Tjong, S.C., Mai, Y.-W.: Essential work of fracture (EWF) analysis for short glass fiber reinforced and rubber toughened nylon-6. Polym. Eng. Sci. 43, 558–569 (2003)CrossRefGoogle Scholar
  15. 15.
    Laura, D.M., Keskkula, H., Barlow, J.W., Paul, D.R.: Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer 43, 4673–4687 (2002)CrossRefGoogle Scholar
  16. 16.
    Cho, J.W., Paul, D.R.: Glass fiber-reinforced polyamide composites toughened with ABS and EPR-g-MA. J. Appl. Polym. Sci. 80, 484–497 (2001)CrossRefGoogle Scholar
  17. 17.
    Laura, D.M., Keskkula, H., Barlow, J.W., Paul, D.R.: Effect of glass fiber and maleated ethylene–propylene rubber content on the impact fracture parameters of nylon 6. Polymer 42, 6161–6172 (2001)CrossRefGoogle Scholar
  18. 18.
    Laura, D.M., Keskkula, H., Barlow, J.W., Paul, D.R.: Effect of glass fiber and maleated ethylene–propylene rubber content on tensile and impact properties of nylon 6. Polymer 41, 7165–7174 (2000)CrossRefGoogle Scholar
  19. 19.
    Langer, B., Seidler, S., Grellmann, W.: Influence of temperature and moisture on toughness behaviour of polyamide. In: Grellmann, W., Seidler, S. (eds.) Deformation and Fracture Behaviour of Polymers. Springer, Berlin (2001), pp. 209–228CrossRefGoogle Scholar
  20. 20.
    Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)CrossRefGoogle Scholar
  21. 21.
    Gomina, M., Pinot, L., Moreau, R., Nakache, E.: Fracture behaviour of short glass fibre-reinforced rubber-toughened nylon composites. In: Blackman, B.R.K., Pavan, A., Williams, J.G. (eds.) Fracture of Polymers, Composites and Adhesives II. ESIS Publication 32. Elsevier, Amsterdam (2003), pp. 399–418CrossRefGoogle Scholar
  22. 22.
    Nair, S., Subramaniam, A., Goettler, L.: Fracture resistance of polyblends and polyblend matrix composites: Part II Role of the rubber phase in Nylon 6,6/ABS alloys. J. Mater. Sci. 32, 5347–5354 (1997)CrossRefGoogle Scholar
  23. 23.
    Zhu, X.-K.: J-integral resistance curve testing and evaluation. J. Zhejiang Univ. Sci. A 10, 1541–1560 (2009)CrossRefGoogle Scholar
  24. 24.
    Baldi, F., Riccò, T.: High-rate J-testing of toughened polyamide 6/6: applicability of the load separation criterion and the normalization method. Eng. Fract. Mech. 72, 2218–2231 (2005)CrossRefGoogle Scholar
  25. 25.
    MacGillivray, H.J.: J-fracture toughness of polymers at impact speed. In: Moore, D.R., Pavan, A., Williams, J.G. (eds.) Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites. ESIS Publication 28. Elsevier, Amsterdam (2001), pp. 159–175CrossRefGoogle Scholar
  26. 26.
    Hornsby, P., Premphet, K.: Fracture toughness of multiphase polypropylene composites containing rubbery and particulate inclusions. J. Mater. Sci. 32, 4767–4775 (1997)CrossRefGoogle Scholar
  27. 27.
    Grellmann, W., Seidler, S., Hesse, W.: Procedure for determining the crack resistance behaviour using the instrumented impact test. In: Grellmann, W., Seidler, S. (eds.) Deformation and Fracture Behaviour of Polymers, pp. 71–86. Springer, Berlin (2001)CrossRefGoogle Scholar
  28. 28.
    Heilemann, M.: Fluorescence microscopy beyond the diffraction limit. J. Biotechnol. 149, 243–251 (2010)CrossRefGoogle Scholar
  29. 29.
    Blake, R.A.: Cellular screening assays using fluorescence microscopy. Curr. Opin. Pharmacol. 1, 533–539 (2001)CrossRefGoogle Scholar
  30. 30.
    Stadthaus, M.: Ja zur Anregung mit LED! Aber warum müssen es gerade 365 nm sein? – Anmerkungen zu zwei Artikeln über die Anwendung von LED in der ZfP-Zeitung Nr. 116. ZfP-Zeitung 117, 21–22 (2009)Google Scholar
  31. 31.
    Samuel, B.A., Haque, M.A.: Visualization of crack blunting using secondary fluorescence in soft polymers. Polym. Testing 27, 404–411 (2008)CrossRefGoogle Scholar
  32. 32.
    PlasticsPortal Europe.: BASF, Ludwigshafen (2007), see: http://www.plasticsportal.net. 2 June 2017
  33. 33.
    ISO 1110 (1995): Plastics—Polyamides—Accelerated conditioning of test specimensGoogle Scholar
  34. 34.
    ISO 527-1 (2012): Plastics—Determination of tensile properties—Part 1: General principlesGoogle Scholar
  35. 35.
    ISO 6721-1 (2011): Plastics–Determination of dynamic mechanical properties—Part 1: General principlesGoogle Scholar
  36. 36.
    Grellmann, W., Seidler, S. (eds.): Polymer Testing, 2nd edn. Carl Hanser, Munich (2013)Google Scholar
  37. 37.
    Forster, G.A., Ellingson, W.A.: An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics. Argonne National Laboratory, Energy Technology Division, Argonne (1996)CrossRefGoogle Scholar
  38. 38.
    Riess, N., Ivankov, A.: UV-Strahlung oder Blaulicht. ZfP-Zeitung 116, 26–27 (2009)Google Scholar
  39. 39.
    Leroy, J.-V., Simon, T., Deschenes, F.: Real time monocular depth from defocus. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) Image and Signal Processing. Springer, Berlin (2008), pp. 103–111CrossRefGoogle Scholar
  40. 40.
    McCloskey, S., Langer, M., Siddiqi, K.: Evolving measurement regions for depth from defocus. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) Computer Vision–ACCV 2007, pp. 858–868. Springer, Berlin (2007)CrossRefGoogle Scholar
  41. 41.
    Schechner, Y.Y., Kiryati, N.: Depth from defocus vs. stereo: How different really are they? Int. J. Comput. Vision 39, 141–162 (2000)CrossRefGoogle Scholar
  42. 42.
    Technical Datasheet Ardrox 985P11–985P14. Chemetall, Frankfurt (2003)Google Scholar
  43. 43.
    González-Montiel, A., Keskkula, H., Paul, D.R.: Impact-modified nylon 6/polypropylene blends: 3. Deformation mechanisms. Polymer 36, 4621–4637 (1995)CrossRefGoogle Scholar
  44. 44.
    Kroll, M.: Hybride PA6-Werkstoffe – Methoden der bruchmechanischen Zähig keits charak-terisie rung und Eigenschaftsprofil in Abhängigkeit von den Verarbei-tungs-bedingungen und der Werkstoffzusammensetzung. Berichte aus der Kunst stoff technik. Shaker Verlag, Aachen (2013)Google Scholar
  45. 45.
    Kroll, M., Langer, B., Grellmann, W.: Toughness optimization of elastomer-modified glass-fiber reinforced PA6 materials. J. Appl. Polym. Sci. 127, 57–66 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Kroll
    • 1
  • B. Langer
    • 2
  • W. Grellmann
    • 3
  1. 1.BASF Leuna GmbHLeunaGermany
  2. 2.Department of Engineering and Natural SciencesUniversity of Applied Science MerseburgMerseburgGermany
  3. 3.Centre of EngineeringMartin Luther University Halle-WittenbergHalle/SaaleGermany

Personalised recommendations