3D Reconstruction of Cracks in Polymers—New Insight into the Fracture Behaviour?

  • M. Nachtnebel
  • A. Zankel
  • C. Mayrhofer
  • M. Gahleitner
  • P. Pölt
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


The fracture behaviour of ethylene–propylene rubber (EPR) and linear low-density polyethylene (PE-LLD)-modified polypropylene was investigated. Most interpretations of the fracture behaviour of such polymers are based on results gained from completely fractured samples. To gain deeper insight into the fracture mechanisms the focus was put on the very early stages of the fracturing process. For this purpose tensile tests of the samples were stopped at predefined forces far below the yield. Subsequently 3D reconstructions of the already damaged regions were performed, using serial block-face scanning electron microscopy to get the image stacks. In a comprehensive discussion of the sample preparation the limitations of this method are disclosed. The EPR- and PE-LLD-modified samples showed completely different fracture behaviour, at least at the crack initiation and at low stresses. The results also seem to prove that the interparticle distance is a decisive parameter in the interpretation of the results.


  1. 1.
    Gahleitner, M., Doshev, P., Tranninger, C.: Heterophasic copolymers of polypropylene: development, design principles and future challenges. J. Appl. Polym. Sci. 130, 3028–3037 (2013)CrossRefGoogle Scholar
  2. 2.
    Kim, G.-M., Michler, G.H., Gahleitner, M., Mühlhaupt, R.: Influence of morphology on the toughening mechanisms of polypropylene modified with core–shell particles derived from thermoplastic elastomers. Polym. Adv. Technol. 9, 709–715 (1998)CrossRefGoogle Scholar
  3. 3.
    Poelt, P., Zankel, A., Gahleitner, M., Ingolic, E., Grein, C.: Tensile tests in the environmental scanning electron microscope (ESEM)—Part I: Polypropylene homopolymers. Polymer 51, 3203–3212 (2010)CrossRefGoogle Scholar
  4. 4.
    Zheng, Y., Shen, Z., Wang, M., Ma, S., Xing, Y.: In situ observation of plerosphere/polypropylene composites in the tensile test. J. Appl. Polym. Sci. 106, 3736–3742 (2007)CrossRefGoogle Scholar
  5. 5.
    Schoßig, M., Zankel, A., Bierögel, C., Pölt, P., Grellmann, W.: ESEM investigations for assessment of damage kinetics of short glass fibre reinforced thermoplastics—Results of in situ tensile tests coupled with acoustic emission analysis. Compos. Sci. Technol. 71, 257–265 (2011)CrossRefGoogle Scholar
  6. 6.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the International Conference Computer Vision and Pattern Recognition. San Diego (20—26.06.2005). San Diego (2005), Vol. 2, pp. 60–65Google Scholar
  7. 7.
    Qiu, B., Chen, F., Lin, Y., Shangguan, Y., Zheng, Q.: Control of multilayered core–shell dispersed particles in HPP/EPR/EbP blends and its influences on crystallization and dynamic mechanical behaviour. Polymer 55, 6176–6185 (2014)CrossRefGoogle Scholar
  8. 8.
    Zankel, A., Kraus, B., Poelt, P., Schaffer, M., Ingolic, E.: Ultramicrotomy in the ESEM, a versatile method for materials and life sciences. J. Microsc. 233, 140–148 (2009)CrossRefGoogle Scholar
  9. 9.
    Haubruge, H.G., Jonas, A.M., Legras, R.: Staining of poly(ethylene terephthalate) by ruthenium tetroxide. Polymer 44, 3229–3234 (2003)CrossRefGoogle Scholar
  10. 10.
    Efimov, A.E., Gnaegi, H., Schaller, R., Grogger, W., Hofer, F., Matsko, N.: Analysis of native structures of soft materials by cryo scanning probe tomography. Soft Matter 8, 9756–9760 (2012)CrossRefGoogle Scholar
  11. 11.
    Alekseev, A., Efimov, A., Loos, J., Matsko, N., Syurik, J.: Three-dimensional imaging of polymer materials by scanning probe tomography. Eur. Polym. J. 52, 154–165 (2014)CrossRefGoogle Scholar
  12. 12.
    Zankel, A., Wagner, J., Poelt, P.: Serial sectioning methods for 3D investigations in materials science. Micron 62, 66–78 (2014)CrossRefGoogle Scholar
  13. 13.
    Zubov, A., Pechackova, L., Seda, L., Bobak, M., Kosek, J.: Transport and reaction in reconstructed porous polypropylene particles: model validation. Chem. Eng. Sci. 65, 2361–2372 (2010)CrossRefGoogle Scholar
  14. 14.
    Koch, T., Salaberger, D., Zankel, A., Reingruber, H., Steiger-Thirsfeld, A., Voronko, Y., Seidler, S.: Methods for characterizing the 3-D morphology of polymer composites. Macromol. Symp. 315, 115–124 (2012)CrossRefGoogle Scholar
  15. 15.
    Michler, G.H., Baltá-Calleja, F.J.: Nano- and Micromechanics of Polymers: Structure Modification and Improvement of Properties, pp. 165–174. Munich, Carl Hanser (2012)CrossRefGoogle Scholar
  16. 16.
    Liang, J.Z., Wang, L.: Particle interaction effects on interfacial stress in extension of rubber-toughened polypropylene. Polym. Plast. Technol. Eng. 48, 1282–1286 (2009)CrossRefGoogle Scholar
  17. 17.
    Marx, V.: Brain mapping in high resolution. Nature 503, 147–152 (2013)CrossRefGoogle Scholar
  18. 18.
    Keller, A.L., Zeidler, D., Kemen, T.: High throughput data acquisition with a multi-beam SEM. In: Postek, M.T., Newbury, D.E., Platek, S.F., Maugel, T.K. (eds.) Proceedings of SPIE 9236: Scanning Microscopies 2014. (2014), paper 92360BGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Nachtnebel
    • 1
  • A. Zankel
    • 1
  • C. Mayrhofer
    • 1
  • M. Gahleitner
    • 2
  • P. Pölt
    • 1
  1. 1.Institute for Electron Microscopy and NanoanalysisGraz University of TechnologyGrazAustria
  2. 2.Borealis GmbHLinzAustria

Personalised recommendations