Characterisation of Polymers in the Scanning Electron Microscope—From Low-Voltage Surface Imaging to the 3D Reconstruction of Specimens

  • A. Zankel
  • M. Nachtnebel
  • C. Mayrhofer
  • K. Wewerka
  • T. Müllner
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)


The scanning electron microscope (SEM) is a versatile tool for the characterisation of polymers. The nowadays available broad variety like the conventional SEM (CSEM), the variable pressure SEM (VPSEM) and the environmental SEM (ESEM) enable different investigation techniques for analysis. In this article special modes of performance are discussed. These are the low-voltage mode of the CSEM for the characterisation of surfaces without preparation, the low-vacuum mode of the ESEM utilising an imaging gas for charge compensation at nonconductive samples and the ESEM mode enabling the investigation of wet samples. These modes not only facilitate appropriate characterisations of conventional polymer specimens e.g. for the purpose of fractography, but even open the field for new in situ investigations, where the change of the sample due to e.g. a mechanical influence can be imaged time-resolved.



The authors would like to thank Margit Wallner for graphical support and Manuel Paller for drawing the schematic of Fig. 7.3. We are grateful to G. Leitinger from the Medical University Graz, Austria, for image courtesy of Fig. 7.6a (tissue of the retina of an insect).


  1. 1.
    Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L., Michael, J.R.: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. Kluwer Academic/Plenum Publishers, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Michler, G.H.: Electron Microscopy of Polymers. Springer, Berlin (2008)Google Scholar
  3. 3.
    Sawyer, L.C., Grubb, D.T., Meyers, G.F.: Polymer Microscopy, 3rd edn. Springer, New York (2008)Google Scholar
  4. 4.
    Danilatos, G.D.: Foundations of environmental scanning electron microscopy. Advan. Electron. Electron Phys. 71, 109–250 (1988)CrossRefGoogle Scholar
  5. 5.
    Stokes, D.J.: Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM). Wiley, Chichester (2008)CrossRefGoogle Scholar
  6. 6.
    Reimer, L.: Image Formation in Low-Voltage Scanning Electron Microscopy. SPIE-Press, Bellingham, Washington (1993)CrossRefGoogle Scholar
  7. 7.
    Joy, D.C., Joy, C.S.: Low voltage scanning electron microscopy. Micron 27, 247–263 (1996)CrossRefGoogle Scholar
  8. 8.
    Fischer, W.J., Zankel, A., Ganser, C., Schmied, F., Schroettner, H., Hirn, U., Teichert, C., Bauer, W., Schennach, R.: Imaging of the formerly bonded area of individual fibre to fibre joints with SEM and AFM. Cellulose 21, 251–260 (2014)CrossRefGoogle Scholar
  9. 9.
    Nase, M., Zankel, A., Langer, B., Baumann, H.-J., Grellmann, W., Poelt, P.: Investigation of the peel behavior of polyethylene/polybutene-1 peel films using in situ peel tests with environmental scanning electron microscopy. Polymer 49, 5458–5466 (2008)CrossRefGoogle Scholar
  10. 10.
    Grellmann, W., Seidler, S. (eds.): Polymer Testing, 2nd edn. Carl Hanser, Munich (2013)Google Scholar
  11. 11.
    Zankel, A., Chernev, B.S., Brandl, C., Poelt, P., Wilhelm, P., Nase, M., Langer, B., Grellmann, W., Baumann, H.J.: Assessment of beam damage in polymers caused by in situ ESEM analysis using IR spectroscopy. Macromol. Symp. 265, 156–165 (2008)CrossRefGoogle Scholar
  12. 12.
    Schoßig, M., Zankel, A., Bierögel, C., Pölt, P., Grellmann, W.: ESEM investigations for assessment of damage kinetics of short glass fibre reinforced thermoplastics—Results of in situ tensile tests coupled with acoustic emission analysis. Compos. Sci. Technol. 71, 257–265 (2011)CrossRefGoogle Scholar
  13. 13.
    Reingruber, H., Zankel, A., Mayrhofer, C., Poelt, P.: A new in situ method for the characterization of membranes in a wet state in the environmental scanning electron microscope. J. Membr. Sci. 399, 86–94 (2012)CrossRefGoogle Scholar
  14. 14.
    Egerton, R.F., Li, P., Maláč, M.: Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004)CrossRefGoogle Scholar
  15. 15.
    Kitching, S., Donald, A.M.: Beam damage of polypropylene in the environmental scanning electron microscope: an FTIR study. J. Microsc. 190, 357–365 (1998)CrossRefGoogle Scholar
  16. 16.
    Denk, W., Horstmann, H.: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, 1900–1909 (2004)CrossRefGoogle Scholar
  17. 17.
    Zankel, A., Kraus, B., Poelt, P., Schaffer, M., Ingolic, E.: Ultramicrotomy in the ESEM, a versatile method for materials and life sciences. J. Microsc. 233, 140–148 (2009)CrossRefGoogle Scholar
  18. 18.
    Piller, M., Neubauer, C.: Entwicklung einer neuartigen Methode zur Oberflächenätzung von Polymeren unter der Verwendung des “beam-damage” eines Elektronenmikroskopes. Projektarbeit, Chemie-Ingenieurschule Graz, Graz (2010)Google Scholar
  19. 19.
    Zankel, A., Wagner, J., Poelt, P.: Serial sectioning methods for 3D investigations in materials science. Micron 62, 66–78 (2014)CrossRefGoogle Scholar
  20. 20.
    Wernitznig, S., Rind, F.C., Poelt, P., Zankel, A., Pritz, E., Kolb, D., Bock, E., Leitinger, G.: Synaptic connections of first-stage visual neurons in the locust Schistocerca gregaria extend evolution of tetrad synapses back 200 million years. J. Comp. Neurol. 523, 298–312 (2015)CrossRefGoogle Scholar
  21. 21.
    Koch, T., Salaberger, D., Zankel, A., Reingruber, H., Steiger-Thirsfeld, A., Voronko, Y., Seidler, S.: Methods for characterizing the 3-D morphology of polymer composites. Macromol. Symp. 315, 115–124 (2012)CrossRefGoogle Scholar
  22. 22.
    Reingruber, H., Zankel, A., Mayrhofer, C., Poelt, P.: Quantitative characterization of micro-filtration membranes by 3D reconstruction. J. Membr. Sci. 372, 66–74 (2011)CrossRefGoogle Scholar
  23. 23.
    Müllner, T., Zankel, A., Mayrhofer, C., Reingruber, H., Hoeltzel, A., Lv, Y., Svec, F., Tallarek, U.: Reconstruction and characterization of a polymer-based monolithic stationary phase using serial block-face scanning electron microscopy. Langmuir 28, 16733–16737 (2012)CrossRefGoogle Scholar
  24. 24.
    Müllner, T., Zankel, A., Svec, F., Tallarek, U.: Finite-size effects in the 3D reconstruction and morphological analysis of porous polymers. Mater. Today 17, 404–411 (2014)CrossRefGoogle Scholar
  25. 25.
    Hashimoto, T., Curioni, M., Zhou, X., Mancuso, J., Skeldon, P., Thompson, G.E.: Investigation of dealloying by ultra-high-resolution nanotomography. Surf. Interface Anal. 45, 1548–1552 (2013)CrossRefGoogle Scholar
  26. 26.
    Koku, H., Maier, R.S., Czymmek, K.J., Schure, M.R., Lenhoff, A.M.: Modeling of flow in a polymeric chromatographic monolith. J. Chromatogr. A 1218, 3466–3475 (2011)CrossRefGoogle Scholar
  27. 27.
    Trueman, A., Knight, S., Colwell, J., Hashimoto, T., Carr, J., Skeldon, P., Thompson, G.: 3-D tomography by automated in situ block face ultramicrotome imaging using an FEG-SEM to study complex corrosion protective paint coatings. Corros. Sci. 75, 376–385 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • A. Zankel
    • 1
    • 2
  • M. Nachtnebel
    • 1
  • C. Mayrhofer
    • 2
  • K. Wewerka
    • 1
  • T. Müllner
    • 3
  1. 1.Institute for Electron Microscopy and NanoanalysisGraz University of TechnologyGrazAustria
  2. 2.Austrian Centre for Electron Microscopy and NanoanalysisGrazAustria
  3. 3.Department of Chemistry IPhilipps UniversityMarburgGermany

Personalised recommendations